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SUMMARY 

The scat tpred nuuiber f lux  dispributions f o r  near7-y monoenergetic 
high energy (0.25 t o  L2.0 eV) argon atomic beams impinging on the (100) face of a 
s ingle  c rys t a l  of tungstenwere obtained as par t  of a basic  study of gas-surface 
interact ions re la ted  $0 s a t e l l i t e  aerodynamics. A fundamental study w a s  chosen 
i n  order t o  allow d i r ec t  cornpaxison with exis t ing and forthcoming theore t ica l  
analyses. 
paration and characterization. 
high vacuum environment , with pr ior  surface characterization conducted through 
the use of op t ica l  microscopy and high energy e lec t ron  d i f f rac t ion .  The amount 
and kind of adsorbed gas a t  the  surface was inferred during b e a m  bombardment by 
means of the  retarding f i e l d  diode method which indicates  changes i n  surface work 
function. 
enhanced v e l o c u i e s  approaching the s a t e l l i t e  veloci ty  range with very l i t t l e  
veloci ty  spread (< lo$). 
of beam contamination a t  the  surface since these gases are  physisorbed only s l igh t ly  
on a room temperature surface 
f o r  an 
beam energies. 
the specular angle and were narrower than the d is t r ibu t ions  found at  the lower 
energies. The maximum of the ref lected pat tern shows only s l igh t  s h i f t  with energy; 
however, adding considerable quant i t ies  of nitrogen or carbon monoxide on the 
t a rge t  surface r e su l t s  i n  wider d i s t r ibu t ions  with higher backscattering and a 
shift i n  the  maximum towards the surface. A saturat ion l eve l  of hydrogen appears 
not t o  change the sca t t e r  r e s u l t s  from those obtained on a clean surface,  probably 
due t o  the  low act ivat ion energy fo r  surface migration of hydrogen. 
even under conditions of high gas coverage i n  carbon monoxide, did the  dis t r ibu-  
t ions  approach t h a t  of a cosine l a w  ref lect ion:  implications concerning the e f f ec t  
of physical parameters and the surface s t a t e  on the sca t te r ing  and accommodation 
are discus sed. 

To permit such comparisons, major emphasis w a s  placed on surface pre- 
Phe sca t te r ing  studies were performed i n  an u l t r a -  

A seeded nozzle beam (argon-helium mixtures) w a s  employed t o  obtain 

The use of an argon-helium beam circumvented the e f f ec t s  

Scatjbered number f lux  d is t r ibu t ions  were obtained 
angle of incidence of 45 degrees and f o r  varying surface conditions and 

The peak i n t e n s i t i e s  f o r  a l l  d i s t r ibu t io  s were found t o  l i e  below 9 

A t  no time, 
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I. INTRODUCTION 

f i ed  gas flow depend strongly on the individual par t ic le  interastiions which 
occur a t  the surface. Physical s t a t e s  of the gas and of the surface determine 
the nature of these interactions and a precise knowledge of these s t a t e s  i s  
required i n  any serious study of gas-surface interactions.  One prime reason 
'for studying these interactions i s  t o  allow calculation of t he  momentum and 
energy t ransfer  i n  s a t e l l i t e  aerodynamic studies. Another i s  the kinet ic  
theory problem of flow through a tube, important f o r  specif ic  types of atmos- 
pheric sampling space probes. 
surface interact ion a re  of course, of extreme in t e re s t  t o  chemists i n  the  study 
of many ca ta ly t ic  reactions.  

The momentum and energy t ransfer  between a surface and a rare- 

The t ransfer  processes occuring during a gas- 

The majority of exis t ing work ( theoret ical  and experimental 
momentum and energy accommodation measurements and beam re f l ec t ion  s tudies)  
has Seen performed i n  the thermal energy range (0.03 t o  0.4 eV), and with the 
exception of a very few notable cases, on undefined surfaces. This paper pre- 
sents some of the f irst  data  t o  be obtained f o r  the higher beam energy (0.3 t o  
2.0 eV) range 
surf ace conditions. 

(approaching s a t e l l i t e  velocity) and under well characterized 

Theoretical models for  the higher energy range are rapidly emerg- 
ing which require experimental va l id i f ica t ion  and it i s  hoped tha t  t h i s  data  
w i l l  a id  i n  the prediction of the  form of the potent ia l  of interact ion as  well 
as permit calculation of parameters such as the well depth energy. I n  t h i s  
regard, a carefully performed scat ter ing study provides a sensit ive t e s t  f o r  
any theory, and also i s  a means of obtaining the above parameters. For t h i s  
reason, the present work i s  a study of $he fundamental i i i teraction problem of 
an ine r t  gas on a single c rys t a l  surface. 
studies,  when the physical mechanisms of t he  interact ion processes are be t te r  
understood, more prac t ica l  engineering surfaces and atmospheric gas beams w i l l  
be used. 

For l a t e r  s a t e l l i t e  aerodynamic 

In  invest igat i  the kinetic interactions which take place be- 
tween a beam of molecules and y a surface, it has been generalrty observed tha t  
there 
The terms diffuse,  specular and lobular are used t o  describe t h i s  spreading 
ef fec t .  The f i r s t  i s  usually equivocal with cosine l a w  scat ter ing i n  which it i s  
assumed tha t  there i s  t o t a l  energy accommodation at the surface. I n  such a case, 
the gas i s  re-emitted w i t h  a Maxwellian d is t r ibu t ion  of ve loc i t ies  at the  tem- 
perature of the surface. The term specular i s  used t o  describe the  s i tua t ion  i n  
which a narrow beam of par t ic les ,  s i m i l a r  t o  the incident one, i s  ref lected 
a t  the "mirror" angle. 
tremes described above is  ca l led  lobular, and should t h i s  d i s t r ibu t ion  be 
symmetric about the specular angle and of 
specular. Concerning the  mechanism of the redis t r ibut ion,  it i s  
quite possible $0 obtain a so-called "multi-specular" interact ion i n  which 
par t ic les  r e t a in  t h e i r  i n i t i a l  speeds, bu-t; r e f l ec t  quite randomly due t o  sur- 
face roughness. 
p le te  accommodation t o  $he surface. 
with t o t a l  energy accommodation and the preptiration of atomically smooth sur- 
faces i s  of paramount importance i n  any basic investigation of scattering. 
Recent experiments employing time-of-flight detection methods (Refs. 1, 2 and 3 )  
have given d i rec t  evidence of the very incomplete and varying accommodation 

i s  a s ignif icant  spreading of the par t ic le  t ra jec tor ies  upon ref lect ion.  

A re f lec t ion  pat tern intermediate between the two ex- 

s ign i f i can t  width, it i s  cal led quasi- 

With such a mechanism, a diffuse re f lec t ion  r e su l t s  with incom- 
Diffuse re f lec t ion  i s  therefore not, synonomous 
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possible i n  different  directions i n  the scattered f lux  d is t r ibu t ions ,  These 

ntum or ene 
in to  the re 

meters which most great ly  a f fec t  the interact ion.  
pat tern have been found t o  r e su l t  from changes i n  the re la t ive  temperature be- 
tween gas and sol id ,  gas species, kind of surface ( i . e .  , type of material) , 
surface condition (rough, smooth, single-crystal ,  polycrystall ine,  with or 
without adsorbed gas layers) and angle of incidence. 

Variations i n  the scat ter ing 

With the exception of some recent experimentation (Refs. 5, 6, 7, 
8 and g ) ,  the  majority of work i n  the f i e l d  of surface interactions ( i .e .  
scat ter ing experiments and thermal and momentum accommodation coefficient mea- 
surements) i s  d i f f i c u l t  t o  in te rpre t  due t o  undefined surface conditions. The 
excellent ear ly  work by Xnauer, Estermann and Stern (Refs. 19 and 11) reported 
a d i f f rac t ion  e f fec t  fo r  the l i gh t  gases (hydrogen, helium) from the a lka l i  
halides. Concurrent with t h i s  work and fo r  the same gas-surface combination, 
workers such as Johnson and Kirschbaum (R 
effect'. Present day experimenters are c nced tha t  the f a i lu re  t o  see d i f f -  
ract ion phenomena w a s  due t o  the existence of an "unclean" surface. 
portance of 
i n  which a degradation of the ref lected signal at %he specular and diffracted 
positions was observed upon exposure of the ta rge t  t o  moist room a i r .  
(.Ref. 15) have i l l u s t r a t e d  the e f fec t  of a gaseous monolayer on the form of 
the scat ter ing pattern.  A quasi-specular lobe w a s  effect ively changed t o  a 

l i ke  dis t r ibut ion upon the adsorption of a saturat ion leve l  of back- 
gas. Hinchen and Foley (Ref. 16) have observed t h i s  e f fec t  as well. 

. 12 and 13) reported no such 

The i m -  
surface preparation was evident i n  the ear ly  work of Zabel (Ref. 1 4 )  

Datz e t  a1 

I n  

out recourse t o  ultrahigh vacuum techniques. 
action-like) behaviour i n  helium, hydrogen 

-through detect 
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given d i rec t ion  because the s ignal  contains no information about those mole- 
cules which have no coherence with the i n i t i a l  modulation, such as those trapped 
a t  the surface f o r  appreciable times or those with widely d i f fe ren t  ve loc i t ies  
from the mean f o r  t h a t  direction. I n  the present work, we have elected t o  use 
the stagnation mode of operation i n  which the  f lux  i s  determined d i r ec t ly  from 
the s ignal .  This f lux  measurement combined with a re f lec ted  veloci ty  determina- 
t i o n  employing the time-of-flight method developed i n  t h i s  laboratory by Locke 
(Ref. 19) w i l l  be used i n  l a t e r  work t o  determine the momentum and energy dis- 
t r i bu t ion  of the re f lec ted  species. This information together with a measure 
of the t o t a l  momentum and energy t ransfer  (current ly  being investigated) , w i l l  
afford a ra ther  complete analysis of the in te rac t ion .  A knowledge of the  f lux  
d is t r ibu t ion  i s  spec i f ica l ly  required when discussing any k ine t ic  theory pro- 
blem involving concave surface geometry. 

It was the objective of the present work t o  obtain r e s u l t s  with 
careful ly  determined surface conditions. Towards t h i s  end, a carefu l  preparation 
of the surface was employed, the  t a rge t  w a s  placed i n  an ul t rahigh vacuum en- 
vironment and surface gas coverage has been inferred i n  s i t u  using the retard-  
ing f i e l d  diode method t o  measure work function changes (Ref. 20 ) .  
choice of an i n e r t  gas beam (argon) avoided any complications resu l t ing  from 
the adsorption of the  beam on the surface. Tungsten w a s  chosen f o r  the ta rge t  
material  because of the f a c i l i t y  of cleaning i n  u l t rah igh  vacuum and a l so  be- 
cause of the large amount of previous work available on adsorption, work function 
measurements and surface preparation. 
angle of incidence) e lectron 6 i f f rac t ion  r e su l t s  are described which provide a 
detai led description of the  t e s t  surface. 

The 

Electron miscroscopy and high energy (low 

The present work a l so  involved the use of a seeded nozzle beam 
(Refs. 21, 22, 23 and 24), allowing sca t te r ing  s tudies  t o  be performed with a 
nearly monoenergetic beam i n  the  r e l a t ive ly  unexplored energy range between 
thermal and s a t e l l i t e  ve loc i t ies  (0.3 t o  10 eV). With the  exception of one 
recent investigation, a l l  previously measured scat tered d is t r ibu t ions  have 
been performed with thermal (0.03 t o  0.4 eV) beams. 
using the continuously deposited f i lm technique of Smith and Saltsburg t o  main- 
t a i n  reproducible surface conditions without recourse t o  ul t rahigh vacuum 
methods, have measured the re f lec ted  spa t i a l  d i s t r ibu t ion  of 1.2 eV argon 
atoms from s i lve r .  A comparison of the  present r e s u l t s  w a s  not made with t h e i r  
work because they used a d i f fe ren t  angle of incidence as well  as a d i f fe ren t  
surface temperature ( 5 6 0 ~ ~  i n  order t o  get ep i t ax ia l  growth of (111) orientat ion 
i n  s i l v e r ) .  
several  gas and surface combinations; however, t h e i r  beam energy (a  charge 
exchanged ion beam) extends from 100 t o  several  thousand electron vo l t s  and 
the mechanism of the  in te rac t ion  for  such energetic beams i s  grossly d i f fe ren t  
from what i s  t o  be expected i n  the s a t e l l i t e  ve loc i ty  range, and thus t h i s  work 
w i l l  not be discussed fur ther  i n  $his report .  

Alcalay and Knuth (Ref. 25), 

Devienne e t  a1 (Ref. 26) have reported scatt,ering experiments fo r  

I n  summary, t h i s  paper reports  a sca t te r ing  study of a high energy 
argon beam on a s ingle  c rys t a l  (100) tungsten surface, allowing a d i r ec t  compari- 
son with the high energy theore t ica l  f lux  predictions of Jackson (Ref. 27) and 
Oman (Refs. 28 aqd 29). A description of surface preparation and characteriza- 
t i o n  using electron microscopy and re f lec ted  high energy electron d i f f r ac t ion  i s  
included, together with the  results of the auxiliary surface work f F c t i o n  mea- 
surements used t o  monitor surface gas adsorptioq during the sca t te r ing  experi- 
ments. Direct comparison of the half  width and posit ion of the maximum of the 
re f lec ted  d is t r ibu t ions  i s  made with exis t ing r e su l t s  a t  the lower end of the 
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energy range of the present r e s u l t s ,  and with the  predictiovls of the hard cube 

ksed by other workers i n  the  study of icle-surface i n t e  

available which describe the design, construction and performance of these 
beams, A l s o  contaided i n  these references i s  an extensive bgbliography on t h e  
work performed br: rfozzle beam research, 
ed i n  %his work, referefices 37, 38 mid 39 should be consulted, 

The present nozzle beam i s  equipped with a heated source (design 
t,emperat,we 2 2500 degrees Kelvin) and employs the  usual seeding techaique t o  
achieve increased ve loc i t fes ,  A velocity analyser i s  presently befdg ins ta l led ,  
bud f o r  the present work, calcula%ed values of the veloci ty  are used. 
Arfderson and Fern ( R e f ,  40) have investigated the veloci ty  d is t r ibu t ions  i n  a 
rozzle beam under s e ~ e r a l  conditions of skimmer interference The parametrer 
which best  describes %his so-called ‘linterferedce” i s  the  Kaudsen number Uased 
on the skimmer o r i f i ce  diameter 
small (< 5 percent) discrepancies between the calculated and measured ve loc i t ies  
Becrker and He&es ( R e f ,  2 2 ) ,  i n  an ea r ly  imestAgakfon of seeded beams, per- 
formed a s i m i l a r  analysis i n  which they have shown t h a t  there  i s  negligible 
veloci ty  s l i p  between t h e  seed m d  ca r r i e r  gases when the  skimmer Knudsen 
number i s  0.3 or greatper. 
Benker and Henkes fo r  xenon-hydrogen mixtures and a l so  showed tha t  there was 
good agreement between c a l c h a t l n g  and measuring the veloci ty  f o r  argon i n  a 
helium-argon mixture e Table 2*101 is a comparison of the threshold conditions 
which the above workers have found, with two typica l  runs performed using the  
E I A S  f a c i l i t y .  A brief look a t  the tab le  w i l l  reveal t h a t  the  present system 
i s  def in i te ly  i n  a region f r ee  from skimmer interference i n  so far as the  pre- 
d ic t ion  of the  beam veloci ty  d is t r ibu t ion  i s  coficerned, A calculat ion of t he  
veloci ty  of the molecular beam from source values of temperature and zomposition 
i s  thus believed t o  introduce only small e r t a i n t i e s ,  The present beam sys- 

For the par t icu lar  beam system employ- 

For mudsen nnmbers wp t o  1.,6 they fourid only 

Later work by Abauf (Ref&)corroborated the  work of 
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A skimmer geometry analysis similar t o  tha t  reported by Hagena 
and Morton (Ref. 41)* w a s  employed t o  achieve theore t ica l  centre l i n e  beam 
fluxes. A b r ie f  summary of t he  analysis may be optlined as follows: 

2 The centre l i n e  f lux  i s  writ ten a s  G x F (molecules/cm sec) 
where G i s  the flow through the source o r i f i ce  given by: 

= (5) PoaoA* (1) 

or measured experimentally by a flow meter. 

The function denoted by F r e su l t s  from the above analysis and 
is  writ ten as: 

- mf2(sin2x) 

dx 2 
COS* x cos2 K x s i n  x e 

(2)  
F = 0.63121 7Mf 

0 

where Mf i s  lhe qranslatory freezing Mach number and 8 i s  the  angle contaiqed 
between the axis of the f r e e  j e t  and the l i ne  drawn from the source t o  the point 
I'P" OD the quitt,ing surface ( i l l u s t r a t e d  i n  Fig. 2.1.1). 

The quantity K i s  equivalent t o  the expression ?r/BC where C i s  
a f ree  j e t  parameter which can be obtaived from tab le  I of Ref. 36. 

Figure 2.1.2 shows the var ia t ion of the quantity F with respect 
t o  8 for  various values of the freezing Mach number. Irj. the present work, a 
choice of geometry was made t o  insure operation i n  the region of large Mach 
numbers and a t  optimum values of 8. Considering the pure argon run of Table 
2.1.1where the value of the freezing Mach number i s  21.0, the choice of a 
1.067 
tha t  01 Fma. Previous operation of the  molecular beam was performed using a 
skimmer which gave an F value of 0.2. Thus a three fo ld  increase i n  the centre 
l ine  in tens i ty  was expected and l a t e r  ver i f ied  experimentally. 

diameter skimmer ( 8  = 7.5 degrees) gives a value of F which i s  99% 

Although one essent ia l ly  increases the s i ze  of the skimmer t o  
achieve an increase i n  the centre-l ine f lux,  it i s  not advantageous t o  make the 
skimmer larger than the  poi@, a t  which F i s  maximum. Inijeed beyond t h i s  point 
there  i s  v i r tua l ly  n~ gain i n  signal and an umiesireable increase i n  the back- 
ground pressure i n  the region downstream of the skimmer r e su l t s .  

The low temper&wes ( typical ly  as low as 10 degrees Kelvin) 
achieved i n  the f r e e  j e t  expansion lead t o  the d i rec t  poss io i l i ty  of agglomer- 
a tes  i y  the beam. The presence of 9 appreciable qumber of 'these agglomerates 
would great ly  a f fec t  the beam ref lec t ion  problem and so conditions which w i l l  
give a condensed beam should be avoided. Milneand Greene (Ref. 42) have mea- 
sured the mole fract ion of argon c lus te rs  formed i n  a f r ee  j e t  and have found 
the majority of the nucleated species t o  be dimers. 
temperature conditions of the present beam system f o r  a pure argon expansion when 

The operating pressure and 

* Present analysis due ;to G.E. McMichael of t h i s  laboratory. 
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inserted i n  t e i r  r e su l t s  indicates the formation of a mole f rac t ion  of A r 2  

argon and helium i n  %he present beam system (5% - 95%, 1% - 99% argon i n  helium) 
w i l l  not allow enough co l l i s ions  between argon atoms t o  take place i n  the  con- 
tinuum expansion stage t o  form an appreciaule rhmber of condensed argon par- 
t i c l e s .  For t h i s  reason, it i s  believed tha t  the present system gives a t rue  
indication of the r e su l t s  fo r  the re f lec t ion  of single argon atoms. 

l e s s  than lo- e . Also, it i s  expected tha t  the use of such d i l u t e  mixtures of 

2.2 Scattering Chamber 

2.2.1 Description 

A photograph of the molecular beam scat ter ing chamber i s  shown i n  
Fig. 2.2.1. 
only metal gasket sealing. 
while the 
General Elec t r ic  tr iode ge t t e r  ion pump (nominal pumping s 
500 l i t res / sec)  i s  used t o  maintain a low pressure (2: l 0 - y t o r r )  i n  the cham- 
ber. The choice of a ge t t e r  ion pump was made because of i t s  inherent c leanl i -  
ness. Bakeout t o  350Qis achieved by thermostatically controlled heating ele- 
ments located on the outside of the apparatus. Spun glass  insulat ion and 
radiat ion shielding are  used t o  assure  more even heating of the en t i r e  assembly. 

The en t i r e  construction i s  of type 304 s ta in less  s t e e l  and employs 
Small flanges use seals  of the ”conflat” design, 

large -24 inch diameter sea ls  are made with OFHC copper wire. A 
ed f o r  air of 

The scat ter ing chamber i s  joined t o  the molecular beam collima- 
t i on  chamber by means of a s ta in less  s t e e l  bellows. This f lex ib le  l i nk  allows 
one t o  posit ion the en t i r e  experimental chamber w i t h  respect t o  the line-of- 
sight of %he beam. Adjustment screws on the scat ter ing chamber assembly aid i n  
achieving t h i s  correct position. A bakeable straight-through valve (Granville 
Phi l l ips  type S )  i s  used t o  i so l a t e  the experimehtal and collimation chambers. 

2.2 2 System Preparation 

For the i n i t i a l  pump down of the above assembly it was necessary 
t o  bake fo r  three days a t  350 degrees Centigrade while pumping w i t h  an extremely 
well trapped two stage mechariical pump. 
down time was about one micron. On the  th i rd  day, the t r iode getter-ion 
pump was s ta r ted  2nd when the pressme reached about 5 x 10-7 t o r r ,  the bakeout 
was termina ed. The next day, the t o t a l  pressure was usually found t o  be 

System preparation became much easier  after the i n i t i a l  pump down arld a one 
day bake was found t o  be suff ic ient  t o  achieve 10-9 t o r r  when the system was 
laker l e t  up t o  atmospheric dry ditrogen f o r  various experimental modifications. 
It should be mentioned tha t  it was necessary i d  the bake-out procedure t o  
bring the system up t o  temperature rabber slowly t o  avoid having the  large 
diameter (24 inch diameter copper wire gaskets) seals  break open. 

The pressure during t h i s  i n i t i a l  pump 

1 - 2 x 10 -4 t o r r  ( a i r )  as measured by a Bake r s  IM 800 nude Bayard-Alpert gauge, 
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2.2.3 Collimation Chamber 

The collimation region of the molecular beam system consis ts  of 
a large m i l d  s t e e l  chamber (shot blasted3 d by means of an untrapped 
32,000 l i t r e s / sec  5 stage fract ionat ing o i l  diffusion pump employing a DC 
f lu id .  The blank-off pressure of t h i s  chamber has been measured t o  be 10' 
t o r r  by means of a cold cathode discharge gauge. Mass spectrometric analyses 
fo r  untrapped fractionating diffusion pumps are d i f f i c u l t  t o  obtain; however, 
the manufacturers' specification sheet for  DC 704 l i s t s  mass nurribers 39, 49, 
50, 51, 52, 77, 78, 105, 137, 149 and 150 amu as the major species. Sirjce the  
lowest mass number w i l l  represent the highest effusion r a t e  i n t o  the scat ter ing 
chamber, the assumption t h a t  100% of the gaseoys vapour over the pump has mass 
number 39 amu w i l l  be made. Based on the above assumption, the flow through 
the collimator o r i f i ce  (2  mm diameter) between the collimation and scat ter ing 
chambers i s  calculated t o  be 1.2 x 10-8 t o r r  l i t res / sec .  Assuming a moderate 
pumping speed of 100 l i t r e s / sec  (actual ly  very much greater than t h i s  due t o  the 
use of cryogenic pumping), the t o t a l  pressure r i s e  i n  the system due t o  the 
effusion of o i l  would be 1.2 x 1O-I '  t o r r .  
s t r ik ing  the surface can be calculated knowing the so l id  angle subtended by the 
t a rge t .  Such a calculation reveals t h a t  it takes ab0 t 1 .5  months t o  form a 

2 monolayer on the surface, assuming tha t  there a re  loll: l a t t i c e  s i t e s  per cm 
available for  adsorption and tha t  the st icking probabili ty i s  unity. 

The number of these par t ic les  

It should be emphasized tha t  the above calculations are conserva- 
t i ve  and tha t  i n  actual  f a c t  the contaminatioq w i l l  be less ,  due t o  the fac t  
t h a t  the majority of the gaseous componen3s i n  $he collimation chamber are of 
a larger  mass number and tha t  the pumping speed for  these o i l  f ract ions is  con- 
siderably higher due t o  the use of l iquid nitrogen and helium pumping. 
for  the component of the gas which diffuses s t ra ight  on t o  the ta rge t  surface 
along the l ine-of-sight of the beam, the cryogenic shroud (described i n  Sec. 2.4) 
w i l l  prevent a l l  other o i l  par t ic les  from reaching the ta rge t .  The retarding 
f i e l d  diode r e su l t s  of section 3.1 ver i fy  t h i s  experimentally. It should be 
mentionep t h i s  poiqt tha t  the t o t  1 pressure measured i n  the collimation 
chamber with the beam on was 2-3 x lO-' t o r r ;  however, since only ine r t  gas 
beams were used i n  t h i s  se r ies  of experiments, the contamination r a t e  a t  the 
surface due t o  effusion from the collimation chamber remains the same as cal-  
culated above. 

Except 

at  

2.3 Molecular Beam Detector 

2.3.1 General Design Considerations 

For the present experiment, a detector must not only be capable 
of measuring the extremely low signals of the r ef lected beam,obut must as well, 
be compatable with the conditions of ultrahigh vacuum and 400 C bakeout. The 
requirement on the sigqal capabi l i t i es  w a s  i n i t i a l l y  found by ca lcu l  t i ng  the 
f lux which would have t o  be detected i f  an incident beam f lux  of 10" part ic les /  
cm2sec ( typical ly  the f lux  of the present beam system) was scat tered in to  a 
cosine dis t r ibut ion.  
bution ( the  maximum), signals down from the incident f lux  by a factor  of 
1/10,000 would have t o  be detected. 
actual  s ignal  levels  recorded (see section 3.2). 
above, t h i s  means tha t  the detection of a ref lected signal equivalent t o  

The r e s u l t  indicated tha t ,  a t  the centre of t h i s  distri- 

This w a s  confirmed experimentally by the 
For the typical  f lux  assumed 
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1 x 
signal f a l l s  off  from the peak in tens i ty  ( the ,backsc 

t o r r  must be real ized i n  those regions of the dis t r ibut ions where the 

a surface coritamin 

of large amounts of hydrogen, on the other hand, requires the use of e i ther  the 
above array or a sublimation pump. A mass spectrometer of course allows a 
thorough knowledge of the environment surrounding the surface and i s  paramount 
i n  any serious study of gas-surface interact ions.  

I n  consi ering the signal-to-noise problem of the detection of 
ref lected argon, it i s  9 ow evident from the experimental r e s u l t s  t ha t  the back- 
ground pressure leve l  i n  the scat ter ing chamber with the beam on and using only 
ion pumping, i s  about 3 x t o r r  (argon) , and thus a signal-to-noise r a t i o  
of 1/300 i s  typical  for  signals i n  the backscattered direction. 
method fo r  increasing the signal-to-noise r a t i o  i n  molecular beam experiments 
has been the modulated beam lock-in-amplifier (Refs. 17 and 18) technique. 
Such a technique, i n  general, requires a gauge with a r e l a t ive ly  f a s t  time 
response since chopping frequencies of the order of 300 cps are routinely used. 
The fly-through mode of operation, i n  which the beam f l i e s  through t h e  ionization 
detector,  displays a time response compatable with the above requirements. For 
t h i s  reason, the fly-through method (s ignal  proportional t o  number density) has 
been the most popular i n  beam experiments t o  date. A hundred fo ld  increase i n  
signal-to-noise i s  typical ly  obtained using the above technique. 

I n  the present system, we have elected t o  use the stagkiation mode 

One popular 

of operation ( s i g d l  proportional t o  flux) and improve signal-to-noise by de- 
creasing the beam gas background pressure level  using l iquid helium cryopumping 
i n  the region of the ta rge t .  This method has the advantage tha t  it gives the 
f lux  d i rec t ly  ( the  quantity most useful i n  a discussion of s a t e l l i t e  aerodynamics) 
and a t  the same time the cryopump reduces the possible background gas contamina- 
t i on  of the target  surface t o  a neglkgible level .  A possible l imitat ion of the 

he detection of a 
c t  as a source or 
ive gauge response 

rption-desorption ra tes  are  e i ther  small 
ed fo r  the measurement of a s tep function 

e r a t e s  for  a material such 
the problem w i l l  not be - ads orb at  e comb i n  a t  i orl s 

ggests t ha t  once the 
i c s  of the multilayers 

gas beam i s  a possi- 
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are such as t o  allow the detection of chemisorbable beams. These qual i ta t ive 
arguments can only be ver i f ied by an experimental study. Certainly the use of 
i ne r t  gas beams present,s no problem i n  t h i s  regard since physisorption i s  not 
appreciable a t  room temperature. 
of argon because the pressure leve l  of argon i n  the gauge volume i s  found t o  
drop t o  an extremely l o w  level  (< 10-l2 to r r )  i n  a short period of time (15 sec) 
when the beam i s  shirt o f f .  

This was ver i f ied experimentally fo r  the case 

2.3.2 General Description of Detector 

A General Electr ic  model 22PT121 mass spectrometer i s  used as 
Figure 2.3.1 i s  a photograph of the above unit the ref lected beam detector. 

i n  i t s  position on the traversing gear assembly. The detector i s  essent ia l ly  
a stagnation (closed volume) device with a sensing probe attached t o  the ioniza- 
t ion  
target  surface and has an angular resolution of 1.8 degrees. 
entering the probe o r i f i ce  are scattered randomly inside the en t i re  gauge volume 
and are  recorded as a density change i n  the mass spectrometer. A t  equilibrium 
(assuming negligible pumping due t o  the mass spectrometer i t s e l f )  the  f lux 
entering the gauge volume i s  equal t o  the flux which leaves. An accurately 
rnachined o r i f i ce  (0.3086 cm) i n  a t h i n  walled (0 ,005")  section of the probe 
(Fig. 2.3.3) allows the use of the simple kinetic calculation &E for  the f lux,  
provided one assumes tha t  the molecules i n  the gauqe volume are completely 
3ccommodated t o  the gauge wall temperature. The present choice of geometry i n  
vJhich %he molecules are forced t o  suffer a large number of col l is ions with the 
walls of the detector before entering the ionization region makes t h i s  a good 
assumption. A cone positioned a t  the rear  wall of the probe and d i rec t ly  be- 
nind the o r i f i ce  prevents high veloci ty  par t ic les ,  such as those encountered i n  
the primary beam, from being ref lected s t ra ight  back oat the hole on the f i rs t  
col l is ion.  Note t h a t  t he  assumption made i n  t h i s  paragraph about the negligible 
pumping speed of the mass spectrometer i s  generally true; these pumping speeds 
are usually much smaller than Bayard-Alpert t o t a l  pressure gauges which are 
typically 0.01 l i t res / sec  for  normal operating conditions. 

region (Figs. 2.3.2 and 2.3.3).  This probe i.s located 9.6 cm from the 
Beam molecules 

The detector i s  mounted on a large (18 inch diameter) gear, 
fabricated from s ta in less  s t e e l ,  and rotated by a means of a worm. Oppositely 
machined "V" grooves i n  the gear and gear support flange (Fig. 2.3.2) comprise 
a race for the 200 s ta in less  s t e e l  b a l l s  upon which the gear turns.  
st icking and 
xere gold plated. The choice of gold was made a f t e r  reference t o  a recent 
a r t i c l e  on bearing performance i n  ultra-high vacuum (Ref. 45 ) .  
ing the bakeout cycle or during normal operation did $his v i t a l  par t  of the 
apparatus s t i ck  or become jammed. 

To avoid 
possible cold welding i n  ultra-high vacuum, these b a l l  bearings 

A t  no time dur- 

A Varian vacuum rotary feed-through was used t o  supply leak 
t ight  linkage between a variable speed ( 5  rpm t o  300 rpm) DC motor and the in- 
side worm. 
tha t  f o r  the lowest motor speed, the  detector can be rotated a t  a r a t e  equi- 
valent t o  1/100 rev/min. Since the time response of the gauge volume i s  about 
5 seconds and the  detector advances only l / 3  of a degree i n  this time in te rva l  
it i s  possible t o  accurately record the scattered beam signal concurrently 
with the detector rotat ion.  Although not used i n  the present work for  reasons 
given i n  Section 3.2.1, the use of a properly geared down multi-turn l inear  

The gear r a t i o  between outside drive and inner gear i s  1/338 so 
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potentiometer could be used t o  obtain p lo ts  on an x - y recorder of the type 
shown i n  Section 3 . 2 .  Further, sophistication would be required t o  obtain a 
normalized s ignal  readout on the y axis .  

Because of the d i f f i c u l t i e s  i n  designing t a rge t  or detector 
a r t icu la t ion  i n  the  bakeable chamber, the detector scans only i n  the so-called 
"incident" ( i , e . ,  the  plane contained by the incident beam and the normal t o  
the surface) plane. This has been the normal procedure of most other workers 
i n  the f i e l d  of molecular scat ter ing.  Enough t r a v e l  i s  provided i n  the detector 
ro ta t ion  t o  allow the detection of the incident beam once the ta rge t  has been 
retracted.  I n  t h i s  manner it w a s  possible by recording the incident s ignal  
before and a f t e r  a run t o  normalize a l l  scat ter ing data by the incident f lux  
value, and t h i s  w a s  always done. 

2.3.3 Rotary E lec t r i ca l  Feedthrough 

The unavai labi l i ty  of bakeable ( 350°C, low outgassing) and 
f l ex ib l e  organic wire insulat ion necessitated the design of a ro ta t ing  device 
which would provide noise-free e l e c t r i c a l  connections t o  the molecular beam 
detector (mass spectrometer) . 
was t o  corinect a copper s t r i p  (0.015" x 0.1875" x 18") t o  a s t a in l e s s  s t e e l  
centre post,  sp i r a l ly  wind it around t h i s  post i n  the manner of a clock spring, 
and connect it t o  an outer concentric r ing (Fig. 2.3.4). Since the present 
experiment reqhired only a maximum of 300 degrees rotat ion,  it w a s  possible by 
f ix ing  the centre post t o  the gear assembly and the outside r ing  t o  the inside 
top of the sca t te r ing  chamber t o  maintain e l e c t r i c a l  continuity as the copper 
s t r i p  was wound or unwound. 
radius from the inner t o  tlie outer contact points,  but possesses good r i g i d i t y  
i n  the plane of the feedthrough. 
stacked one on top of the  other and insulated from one another by means of 
boron n i t r ide  standoffs. 
ro ta t ing  uni ts  by bare copper wires insulated from one another and from the 
other stacked uni t s  by glass  tubing placed i n  holes d r i l l e d  i n  the  inner and 
outer contact r ings.  To prevent the copper spring from coming out of the 
ro ta t ion  plane and touching another stack, a t h i n  (O.Ol5") piece of s t a in l e s s  
s t e e l  sheet w a s  placed between each uni t .  This iece of s t a in l e s s  s t e e l  sheet 

copper s t r i p  ( res is tance = 0.004R ) .  Each feedthrough was designed t o  take a 
current of 5 amperes without overheating and a voltage of 5 kV without break- 
down; under ac tua l  operation there  w a s  no evidence of the existence of e i the r  of 
these problems. A res is tance measurement made on a t e s t  s tack using a Wheat- 
stone bridge revealed t h a t  the  resis tance fo r  the uni t  (0.034Q) was about 10 
times greater than the calculated value (0.004R) 'for the copper s t r i p ;  the  
higher res is tance has been ascribed t o  the contact res is tance between the 
copper s t r i p  and the s ta in less  s t e e l  terminal posts. The grea tes t  change re- 
corded i n  the resis tance,  between having the s p i r a l  f u l l y  wound or f u l l y  un- 
wound, w a s  5% of the measured value. 
c i r c u i t  resistarlce (nominally 1.OQ) change due t o  the above 5% var ia t ion  w a s  
calculated t o  be 0.2% making the system acceptable f o r  the present application. 
Smaller var ia t ions i n  the resis tance could have been achieved by assuring b e t t e r  
e l e c t r i c a l  contact between the s t r i p  and r ing,  by means of welding or brazing 
instead of the mechanical method (screw fastener)  which was Vised i n  t h i s  design. 

The method employed i n  the present experiment 

The copper s t r i p  allows f l e x i d i l i t y  along the  

A number of these b i t s  ( t o t a l  of 15) were 

E lec t r i ca l  condections were made t o  each of the 

represented axes i s t ance  ofLthe order of 8 x 10' i? R i d  pa ra l l e l  with the 

The effect ive mass spectrometer filament 

The low current measuring leve ls  of the electron multiplier out- 
put ( typ ica l ly  loe1' amperes) required t h a t a  f l ex ib l e  and bakeable shielded 
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l i d  w a s  l i f t e d  

s t ructure  iq order t o  provide the voltage dividing chain between dynodes. 
meant t ha t  only two connections t o  the multiplier from outside the  vacuum 
chaaiber had t o  be made, namely the multiplier high voltage (2  KV) which was 
supplied through the rotary device described above, and the signal readout 
which was carried t o  the outside by means of the f lex ib le  bellows l ink.  The 
connections t o  the mass spec+rometer ionizer,  thermocouple junctions and de- 
tector  outgassing oven were a l l  made through the rotary uni t .  

This 

2 a 3 ., 4 Electron Multiplier 

The General Elec t r ic  mass spectrometer i s  equipped with a Dumont 
type 241-199 silver-magnesium electron 

high residual background current leakage ( 
This has also been the experience of‘ other workers using the same instrument*. 
Effective removal of t h i s  leakage current was achieved by back f i l l i n g  the en t i re  
vacuum chamqer t o  about 100 microns pressure of pure hydrogen (Ref. 46) and then 
i n i t i a t i n g  a glow discharge i n  the electron multiplier region. 
procedure, res idual  background currents were reduced t o  less than 10”l2 amperes 
with no detrimental e f fec ts  t o  the multiplier ga . The addition of such large 
amoun$s of hg&ogen did,  however, a f fec t  the abs e background pressure leve l  

u l t i p l i e r  . This uni t  consists of nine 
dynode stages with a nominal gain of 10 8 . Diff icul ty  has been experienced with 

10-7 amperes) a f te r  system bakeout. 

Following -this 

, but a f t e r  tr 

v e l  of hyeogen 
t t e r ed  f lux 

* Gosselin C . , Midwest Research Ins t i t u t e ,  (pr ivate  communication) 
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dist r ibut ion.  
present e l e c t r  
r e s i s t i ve  str multiplier which i s  extire 
experienced when the syst  
sublimation pump fo r  the 
i s  suggested. 

The above dilemma could be resolved by the replacement of the 
multiplier with a now available bakeab 

2.4 

Removal of the  background gases i n  the region 
ta rge t  serves two purposes. F i r s t l y ,  it increases the s ignal  
pressure r a t i o  of the ref lected beam measurement and secondly 
the contamination of the surface by the background gases. E 
t ions centred around the use of 1 elium cryopumping since it appeared 
capable of f u l f i l l i n g  both these requirements very effect ively.  
cryogenic pbmp region w a s  designed and b u i l t  t o  surround the ta rge t .  It con- 
sists of a l iquid helium s ta in less  s t e e l  dewar (9.5" i n  diameter by 3.75" deep) 
completely surrounded by a larger but s imi la r i ly  constructed vessel of l iquid 
nitrogen (Fig. 2.3.2). 
from the surface would r e t a in  a high percentage of t h e i r  i n i t i a l  energy (1 t o  
lOeV), and thak these par t ic les  would not have very large st icking coeff ic ients ,  
even on a 4.2'Kelvin surface, a molecular t r a p  surface was designed. 
s i s t ed  of machined f i n s  on the idside w a l l  of the l iqu id  helium vessel skewed 
a t  an angle t o  the radius vector 
a case, molecular ref lect ions typical  of the high energy par t ic les  (lobular) 
would be i n  towards the f i n  cavity,  and such par t ic les  would suffer multiple 
col l is ions with -tihe 4.2OKelvin surface. A cosine d is t r ibu t ion  (presumably 
resul t ing from slow moving par t ic les )  a t  the t i p  of a f i n  would represent the  
most severe case of the re f lec t ion  of unwanted gas in to  the ta rge t  region; 
however, such slow moving par t ic les  are most l i ke ly  t o  be trapped a t  the 4.2' 
Kelvin w a l l ,  and so do not present a problem. The effectiveness of the cryo- 
t r a p  i s  i l l u s b a t e d  experimentally since the argon background pressure l eve l  
measured when the detector was behind the  ta rge t  and not looking a t  the ref lected 
s ignal  was typical ly  < 5 x t o r r  for  l iquid helium vapour (20°K) cooled 
walls implying tha t  v i r tua l ly  a l l  f a l se  signals i n to  the  detector ( resu l t ing  
from in te rna l  ref lect ions i n  the ta rge t  region) were removed. 

A drum-shaped 

Since it was expected tha t  some of the atoms ref lected 

This con- 

I n  such from the ta rge t  centre (Fig. 2.4.1). 

The above "serrated" wall w a s  constructed as follows. Machined 
from f l a t  s ta in less  s t e e l  stock on an end m i l l  and leaving a 0.010" wall a t  
the root (Fig. 2.4.P), the unit was rol led in to  the  proper diameter and then 
welded in to  the inner section of the helium dewar (Fig. 2.4.3). 
support s t r u t s  i n  the in t e r io r  of the ahnulus allow light-weight construction 
with appropriate strength,  and as well, r e su l t s  i n  be t t e r  use of the l iquid 

aph of the l iqu id  helium 
dewar with f i l l  tube w a s  placed t o  the bottom 

side. This a lso aids i n  
d and gaseous helium. The 
se the radiat ive heat load 

Note t h a t  

e l  allows the mass spectro- 
meter probe t called "incident" plane, and 
a bircular hole os i t ion  the ta rge t  i 
beam or r e t r a c t  ering chamber for  t 

ghs 7.75 lbs ,  requiring 
r cool down from 77OK t o  
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l iqu id  nitrogen q d  

c t ive  heat loads 
of the  equilibrium 

i n  estimating 

e use of a radia 

cavity,  the l iqu id  helium vessel  w a s  constructed with hollow fsgions a t  the  
top and bottom. t o r r  it was 
found t h a t  the use of l iqu id  helium vapour a t  200Kelvin w a s  suff ic ient .  

To achieve argon p a r t i a l  pressures below 10- 

The l iqu id  nitrogen vessel  w a s  constructed s imi la r i ly  t o  the 
l iqu id  helium tank except tha t  so l id  OFHC copper thermal conduction members 
were used both f o r  the top and bottom (Fig. 2.4.5). 
d i s t r ibu t ion  or+ these members indicated t h a t  t h e  temperature a t  t he  centre was 
typ ica l ly  abopt 10 t o  20OKelvin higher than a t  the actual  annular reservoir.  
Since l iqu id  nitrogen i s  r e l a t ive ly  inexpensive compared t o  l iqu id  helium, not 
as much care w a s  t a k e a i n  making the vessel  of light-weight construction. 
Estimated values f o r  the l iqu id  nitrogen consumption indicated tha t  there would 
be a b o i l  off of four 
hour under operating conditions. Experimentally measured values and these 
estimates were not very d i f fe ren t .  

The calculated temperature 

l i t r e s  i n  the cool dowa stage and a loss of 3 l i t r e s /  

The top and bottom conduction members make good phermal contact 
with the apnular reservoir  through a re$aining r ing  attached by a number of 
closely spaced bo l t s  on the circumference. This construction allows easy 
removal of the l iqu id  nitrogen top  and bottom f o r  repa i r  on the  inner vessel  
should t h i s  be required. 

Both vessels are  supported by long, small cross-section rods t o  



cated t h i s  t o  be the case. 
of the probe d accurate value of the beam f l u x  could s t i l l  have been calculated 
based on the thermal trafispiration between the ionizat ion cavi ty  a t  T1 and the  
probe o r i f i c e  a t  T2. 
heating, it i s  possible t o  maintain t h i s  surface a t  any desired value of tem- 
perature from 25' t o  2000°Centigrade. 
w i l l  r e s u l t  i n  an ex ss ive loss  of l i qu id  helium. All the sca t te r ing  work pre- 
sented i d  t h i s  paper as performed on a room temperature surface.  

If there  had been any gross change i n  the  temperature 

Also since the  t a rge t  i s  supplied with electron-bombardment 

Raising the temperature too high, however, 

1 
The theo re t i ca l  pumping speed of a cryogenic pump i s  3.638 S(T/M)' 

litres/cm2sec, where T i s  t h e  temperature of the  pumping surface and S and M 
are  the s t icking coef f ic ien t  and molecular weight respectively of the  gas being 
trapped. Assuming a s t icking coeff ic ient  for  argon of uni ty  a t  the finned sur- 
face and Mowing the projected area toobe 1300 cm2, the pumping speed of the  
cryotrap i s  2: 10,000 l i t r e s / s e c  at  4.2 Kelviri. 
r a t e  of condensable gases illto the t r a p  region from the 10-9 t o r r  environment 
of the sca t te r ing  chamber, indicates  a predicted pressure of about t o r r .  

A l i b e r a l  estimate of the leak 

The background pressure of t he  beam gas cannot be calculated on 
the bas i s  of the above formula since the beam being a one dimensional gas and 
havirig direct ion i n t o  the l iqu id  helium cooled walls e i the r  before or a f t e r  
re f lec t ion ,  means t h a t  the  theore t ica l  pumping speed i s  i n f i n i t e  f o r  a s t icking 
coeff ic ient  of unity.  This l i m i t ,  of course, can never be obtained i n  pract ice ,  
and as s ta ted  previously, backgromd pressuresof 5 x t o r r  were typ ica l ly  
found f o r  helium vapour cooled walls (20°K). when the high energy argon beam was 
entiering the  cavity a t  a flow of 3 x 10-7 t o r r  l i t r e s / sec .  
l iqu id  helium (4.2'K) would presumably increase the s t icking probabili ty of the 
energetic argon atoms and r e s u l t  i n  a lower argon pressure; however, the use of 
the  helium vapour w a s  suf f ic ien t  i n  the present work t o  increase the signal-to- 
noise r a t i o  of 
a t  which the remaining noise w a s  due t o  other causes such as e lectron multiplier 
var ia t ion.  

The use of ac tua l  

t h e  argon beam signal  t o  argon background t o  a workable level ,  

2.5 Target 

2.5.1 Target Surface 

A t r u e  understanding of the k ine t ic  interact ions which occur 
when a beam of gas pa r t i c l e s  s t r i k e s  a t a rge t ,  only becomes a poss ib i l i t y  when 
the atomic arrangement; of the surface i s  known. For t h i s  reason a s ingle  
c rys t a l  t a rge t  of known orientat ion was used i n  the present work. 
chosen f o r  the t a rge t  material  because of'dche f a c i l i t y  with which it can be 
cleaned i n  ultrahigh vacuum and because of the large amount of previous work 
available on adsorption, work function measurements and general surface prepara- 
t i on .  For d i r ec t  comparison with the theore t ica l  in te rac t ion  models of O m a n  
(Refs. 28 and 29)  and Jackson (Ref. 27), a s ingle  c rys t a l  surface of (100) 
or ientat ion was used. An import& consideration i n  the choice of a (100) 
single c rys t a l  kungsten surface was i t s  inherent s t a b i l i t y  (no microfaceting) 
even a f t e r  prolonged heating i n  vacbum (Ref. 47). 

Tungsten was 

The t a r g e t  button (6 mm diameter x 2 mm thick)  was spark cut from 
fined rod of tungsten and mechanically polished using the techniqbe 
by Samuels ( R e f .  48) and used successfully by Sewell (R f 49). The 

above polishing does work-harden the surface of the  c r y s t a l  t o  m a  3 y l a t t i c e  
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layers deep., This i s  i l l u s t r a t ed  by the rather  large and 
spots i n  the Laue back-reflected x-ray photograph shown i 
fore high temperature annealing. Figure 
c rys ta l  w a s  heated repeatedly t o  20OO0C 
The spots are much l e s s  diffuse i n  t h i s  
hardening has been removed. The above pho 
ten  white radiat ion with electron volt  ages 
respectively. Laue photographs taken us 
reveal the presence of work-hardening; t 
tha t  the more energetic x-rays penetrate deeper in to  the  c rys t a l  thus resul t ing 
i n  the Laues being l e s s  sensi t ive t o  the localized work-hardened region near 
the surface. 

use re f lec t ion  

Another r e su l t  of the polishing techniqpe described above i s  the 
presence of polishing marks (scratches) on the surface. 
normally disappear f o r  the materials i n  which there i s  a high degree of mobility 
of the surface atoms (e .g. , platinum, nickel and iron) a t  high annealing tempera- 
tu res  For the present surface, the tungsten atoms did not display 
a high enough degree of mobility a t  the annealing temperature of 20OO0fl and as 
a r e su l t ,  t races  of the polishing marks remain. 
photograph of the surface i n  bright f i e l d  taken a,i 140 power i n  which only the 
deepest scratches are  resolved. 
and they cover an estimated 5% of the t o t a l  surface area. 
of the surface i s  not expected t o  change the ref lected dis t r ibut ions consider- 
ably since par t ic les  ref lected from these parts of the surface w i l l  be randomly 
dis t r ibuted over the en t i r e  re f lec t ion  region and thus add only a small percent- 
age t o  the signal near the maximum direct ion.  

These scratches 

(Ref. 49). 

Figure F.5.3 i s  an opt ica l  

The estimzted width of the scratches i s  105a 
Such a coverage 

An opt ica l  phase contrast  microscope accentuates these polishing 
marks (Fig. 2.5.4) and as well shows a greater number of features a t  the surface 
than for the bright f i e l d .  It i s  t o  be noted that  the appearance of the surface 
i s  deceiving i f  interpreted as an ordinary shadow-relief picture.  
s h i f t  i n  the ve r t i ca l  direction of 26008 would r e su l t  i n  a var ia t ion from maxi- 
mum brightness t o  maximum darkne s. 

surface has a height var ia t ion considerably l e s s  than t h i s ,  as estimated from 
the moderate brightness variation. The surface i s  thus i n  r e a l i t y  very f l a t .  
The ripple-like s t ructure  covering most of the surface i n  between the  larger 
scratch marks represent a waviness i n  the surface f o r  which it has been esqi-  
mated tha t  the  distance between cres t s  i s  typical ly  1058 with a roughly e s t i -  
mated depth of several hundred Angstroms. 
expected t o  a f fec t  the scat ter ing r e su l t s  t o  any great degree because from the 
electron d i f f rac t ion  r e su l t s  ( t o  be discussed), it i s  concluded tha t  the slopes 
of these contours are not smooth but stepped i n  highly ordered (100) f la t  areas.  
The e f fec t  of t h i s  on the molecular scat ter ing i s  tha t  only about 2% of the mole- 
cules could be involved i n  s t r ik ing  the steps between the order (100) faces. 
Since the resul t ing dis t r ibut ion fo r  molecules s t r ik ing  qhese steps i s  almost 
cer ta in ly  expected t o  be diffuse and dis t r ibuted randomly over the en t i r e  
re f lec t ion  region above the surface, the dis t r ibut ions found i n  the  present W O r B  

w i l l  not be great ly  affected because of t he i r  narrowness The appearance of 
red but stepped single c rys t a l  faces has a l so  en the finding for  
onstructed surfaces using electron microscope techniques (Ref. 49). 

A half wave 

Thus the worst scratches (those seen i n  
br ight  f i e l d )  are  l e s s  than 2600 1 i n  depth, and a very large percentage of the 

This gentle ro l l ing  would not be 

The above considerations suggest t h a t  
l e s s  i n  a bright f i e l d  (ordinary opt i  
i s  revealed when viewed with a phase contrast  microscope, suggesting tha t  the 



former technique should be used with discret ion when inferr ing the smoothness 
of surfaces. 

c a l  phase microscope was used t tudy the surface contour 
2.5.5 indicates tha% the surf 

than near the edge as i s  the common f i n  
pol'shed by grinding. 

centre and at  
no errors  i n  the experimental r e su l t s  are expected because of t h i s  s l i gh t  
curvature 

The extent of t h i s  surface displacement i s  such as t o  
r e s  i: It i n  angular deviation between the normals t o  the surface a t ,  the 

t h e  edge of the c rys t a l  of l e s s  than 0,006 degrees, Certainly 

Reflected high energy electron d i f f rac t ion  techniques (Ref, 49) 
were used t o  characterize the  surface further*, 
electron re f lec t ion  patterns taken f o r  two d i f fe ren t  azimuthal ahgles before 
the c rys t a l  was ins t a l l ed  i n  the  experimental chamber, 
surface t o  t h i s  point was as follows: surface mechanically polished t o  within 
one degree of the (100) orientation, surface annealed ' n  ultrahigh vacuum a t  
115OoC fo r  30 minutes, fur ther  anneal t o  115OoC i n  lo-' t o r r  hydrogen and 
annealed again i n  ultrahigh vaccum t o  1700°C for  a t o t a l  of 20 hours, 
re f lec t ion  stsudies taken abeach  s t ep  i n  the above procedure indicated tha t  a 
well constructed surface of (100) orientakion was formed a f t e r  annealing. 
exposure t o  hydrogen resul ted i n  neither an improvementnor a degradation of 
the surface, indicating t h a t  there would be l i t t l e  or  no e f fec t  when the ta rge t  
was exposed t o  the re la t ive ly  low concentration of hydrogen (95% of the t o t a l  
pressure) i n  the ultrahigh vacuum environment of the scat ter ing chamber 
Figure 2.5.7 i s  from a RHEED study performed a f t e r  the scat ter ing experiments, 
during which the surface was exposed t o  the high bombardment r a t e s  of the argon 
beam and flashed t o  200Ooh repeatedly (about 30-40 times) both during bombard- 
ment and without. A t  one point a nitrogen beam w a s  used f o r  comparison pur- 
poses and the ta rge t  was also exposed t o  i t s  high bombardment r a t e .  A s  indi-  
cated by the above RHEED photographs, the crystial s t i l l  retained i t s  ordered 
s t ructure  and no microfaceting t o  orientations other than (100) were recorded, 
A l s o  found fromthese r e su l t s  was the absence of carbon growth a t  the surface, 
implying tha t  the c rys t a l  did not contaih a high percentage of carbon as i m -  
purity.  The quoted d is t r ibu tors '  carbon concentration was 9 ppm. There was 
a l so  no evidence tha t  thorium from the retarding f i e l d  diode filament had con- 
t r ibuted t o  a reconstruction of the surface (see section 2.5.5).  This r e s u l t  
was anticipated since the thorium emitter was not heated above 1300°K and the  
evaporation r a t e  at t h i s  temperature i s  low. Equilibrium evaporation data taken 

apter 10 of Ref. 50 was used t o  calculate  
f o r  a monolayer coverage of thorium on the ta rge t  surface. Such an 

estimate revealed tha t  it would take of the order of 10 years assuming 1014 
l a t t i c e  s i t e s  available f o r  adsorption. 
the adsorption 
concluded tha t  en t i r e  amount of the  thorium i s  removed from such a surface 
by heating t o  lg0OoC; t h e i r  LEED studies a lso indicated tha t  the surface had not 
changed s t ruc tura l ly  i n  any way due t o  the existence of these atoms a t  the sur- 
face. For a detai led how t o  in te rpre t  ref leot ion electron d i f f -  
ract ion data f o r  in fe  ence of microfaceting or carbon growth, the 

Figure 2.5.6 i l l u s t r a t e s  2 

The h is tory  of the 

Electron 

The 

a lower l i m i t  on the t i m e  re-  

Estrup e t  a1 ( R e f .  51) have measured 
thorium on a (100) single c rys t a l  face of tungsten and have 

* RHEED work performed by P. S 11, National Re ch Council of Canada. 
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r nsu 

nge i n  the posit ion of the 
pins was noticed when the c rys t a l  was f i rs t  heated, but a ro ta t ion  of the amount 
recorded above w a s  no t  anticipated. 
i n  order t o  make easy comparison with the exis t ing theoret ical  models (Refs. 
27, 28 and 29). 
angle from zero t o  8 degrees and has found a negligible difference i n  the posi- 
t ion  and width of the maximum of the ref lected d is t r ibu t ion  as predicted by h i s  
model. 
are typical ly  10 degrees wide a t  90% of maximum, it i s  expected t h a t  the above 
misalignment w i l l  not a f fec t  the r e su l t s  materially. 

Figure 2.5.Q w a s  taken a f t e r  careful  op t ica l  alignment of the 
The skewness 

The i n i t i a l  azimuthal orientation w a s  made 

Jackson has lookgd a t  the e f fec t  of changing the azimuthal 

Based on t h i s  r e su l t  aqd on the f a c t  t h a t  the experimental dis t r ibut ioqs 

surface normal t o  within io of the incident x-ray beam direction. 
of the pat tern affords a good estimate of the degree of misalignment of the 
(100) c rys t a l  direct ion with the normal t o  the surface. 
nique, the angular deviation between the above two directions has been found t o  
be within 1 - 2 degrees. 

Using the above tech- 

The actual  posit ion of the c rys ta l  once i n  the scat ter ing chamber 

gle  of inc idenc 
was measured i n  s i t u  s) a f t e r  the tungsten pins 

but revealed tha$ the 
c rys ta l  was about 3' from 
maximum of the d i s t r  errts as i n  the previous 

ar position of the 

dis t r ibut ions i s  about 10 
t problem i s  not expected t o  

A complete view of the ta rge t  mast assembly i s  i l l u s t r a t e d  i n  
Fig. 2.5.8. The ta rge t  button i s  supported by three r igh t  angle pins (0.020" 
diameter) each of which i s  s e t  i n  a spark etched hole (0.0lOl' diameter) posi- 
tioned a t  120 degree intervals  i n  the side of %he ta rge t  d i sc  (Fig. 2.5.9). 
One of these pins i s  pure tungsten and the other two are tungsten-5($ rhenium; 
two unlike pins paired toge$her form a thermocouple f o r  measuring the ta rge t  
temperature. 
20OO0C. 
f o r  the temperature t o  reach 12OoC. 

Figure 2.5.10 i s  a p lo t  of the  temperature prof i le  fo r  heating t o  
Note t h a t  i n  the cooling portion of the curve tha t  17 seconds are required 
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The ta rge t  support pins are mounted 
which i s  i n  turn  mounted on a s ta in less  s t e d  disc  which i s  inser ted in to  a hole 

side of the vac 
ta rge t  up i n t o  
the scat ter ing 

leak r a t e  of the gas c 
radiat ive heat load f 
Provision i s  made at  

ta rge t  a r t icu la t ion  i n  
e broken i n  order t o  make 

th i s  change, or  , a,change .in the'  azimuth angle e 

The motion feedthrough device used t o  move the %=get i n  or out 
of the beam posit ion i s  an in tegra l  par t  of the ta rge t  mount and consists of 
a f lex ib le  s ta in less  s t e e l  bellows l i nk  on the outside of the  vacuum chamber 
allowing a rotat ion (pivot at point A) of the driving rod (Fig. 2.5 .ll). A rod 
located pa ra l l e l  t o  t h i s  main rod and pivoted as well a t  the vacuum wall (point 
B) maintains $he ve r t i ca l  or ientat ion of the t a rge t  mast over i t s  en t i r e  t r ave l .  
A small l a t e r a l  motion ($'I over 4" of v e r t i c a l  t r ave l  as designed f o r  the  present 
application) of the mast resu l t s  from such a design; however, it i s  straight-for- 
w a r d  t o  de%ermine when the centre of the ta rge t  i s  i d  the detector plane and at- 
the centre of the detector measuring c i r c l e .  An indicator on the outside of the 
vacuum chamber allows one %o s e t  the required posit ion of the ta rge t  precisely, 
and a lock screw re ta ins  the desired position. 

2.5.4 Target- Cleaning 

Target heating i s  accomplished by means of electron bombardment 
from the back face,  and temperatures of 20OO0C are eas i ly  achieved. 
t o  th i s  temperature i s  the s t  ard procedure i n  the  f i e l d  of gaseous adsorp- 
t i on  (Ref . 54, p.22)and des on of curves obtained by f l a s h  filament tech- 
niques fo r  the common gases indicate that heating t o  the above temperature re-  
moves the majority of the adsorbed species (Refs. 55, 56 and 57). 

Heating 

The electron bombardment filament i s  n c lear ly  i n  Fig. 2.5.9. 
For the  
about 7 seconds t o  reach 2000 C (see heating curve e 2.5.10). A s  noted 
previously i n  section 2.5.3, the  cooling portion of t h i s  same 
it takes about 1'7 seconds t o  re turn t o  a surface temperature o 

instantaneous applicasion of 120 watts of ng it was found t o  take 

e shows t h a t  
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2.5.5 Retarding Fie ld  Diode 

The retarding f i e l d  diode method f o r  t he  measurem 
o the  adsorption of a gas on the  sur i n  surface work function due 

(Refs. 20, 58 
e diode as it w a s  p e d  i n  the  present work. Such a c i r c u i t  can be 

used i n  two different  modes. t h  the mode switch i n  posit ion No.  1, <he c i r cu i t  
can display the  en t i re  i - V .  ch c t e r i s t i c  of t he  diode as shown i n  Fig. 2.5.13. 
A sweep voltage from a sui table  osc i l l a to r  splpplies the biasing voltage on the  
anode ( t a rge t )  and i s  recorded on the  x axis  of an x-y recorder. The voltage drop 
across a 2K!2 r e s i s to r  i s  supplied t o  the  y-axis and i s  proportional t o  the  current 
of the diode. The adsorption of a gas on the s p f a c e  w i l l  cause a s h i f t  i n  the 
en t i r e  charac te r i s t ic  as shown i n  Fig.  2.5.14 f o r  the  adsorption of nitrogen on 
(100) tpngsten. 
which t o  run the  diode, and the var ia t ion  i n  Va upon the  adsorption of gas i s  
recorded by a Keithley 610~ electrometer and displayed on an x-t plot  as shown i n  
Fig. 2-5.15, The background gas of t he  sca$tering chamber a t  the time of t h i s  
par t icu lar  work function analysis did not contain as large an amount of hydrogen 
as i n  the  experiments t h a t  followed a f t e r  electron multiplier treatment (sect ion 
2.3.4). Consequently the adsorption of nitrogen on the  surface i s  more complete 
and a larger  change i n  work function (730 mV) i s  recorded f o r  saturat ion i n  ni t ro-  
gen. This change i s  r e l a t ive ly  close t o  the  work function 
recorded by Estrup and Awerson ( R e f .  67) f o r  a clean -sten (100) surface. 
Results obtained f o r  the  adsorption of nitrogen on a hydrogen saturated surface 
w i l l  be discussed la ter  i n  Section 3*103* The controll ing equations for the  c i r -  
cu i t  as derived i n  Ref. 20, are  l i s t e d  i n  Fig. 2.5.12. Note t h a t  when the tem- 
perature of the cathode i s  held constant ( i . e .  current i a  = constant) and 
VL >> kT/e, any chaqge i n  t he  anode voltage i s  recorded by the  electrometer and 
i s  equal t o  ;the change i n  the surface work function and t h i s  i s  generally t rue  
f o r  any diode provided ia = f(qa - Va)- 
of var ia t ions i n  the  cathode work function (Ref. 60) on the measurements. The 
method as described above has been found t o  be sensi t ive t o  a f rac t ion  (1/100)of a 
monolayer coverage making it idea l ly  sui ted t o  i t s  present function i n  t h i s  work. 
The DC millivoltmeter i n  Fig. 2.5.12 i s  used t o  record the t a rge t  temperature 
(thermocouple output) during t h e  cleaning period. The TC record posit ion i s  for 
the  use of a more accurate meter (higher input impedance) f o r  measuring t h i s  
temperature. A ca l ibra t ion  of the  DC millivoltmeter w a s  made against  a Keithley 
voltmeter (input impedance 2: 106.Q) a t  t he  lower temperatures (up t o  as high ac 

ombardment voltage as the Keithley 61013 could be f loa ted) .  

59) i n  surface studies.  Figure 2.5.12 i s  a c i r c u i t  

I n  method No, 2, a specif ic  value of t he  current i s  chosen a t  

change (650 mV) 

A fur ther  advantage i s  the independence 

The retarding f i e ld  diode filament i s  mounted i n  f ront  of the  
c rys t a l  i n  a plane pa ra l l e l  t o  the incident plane but displaced from it by a small 
distance 2 mm.' This has been done t o  allow the  beam t o  impinge on the surface 
with no interference from t h i s  0.005'' wire; a negligible nurdber of ref lected 
pa r t i c l e s  have t h e i r  t r a j ec to r i e s  affected by t h e  presence of t he  wire. T o  reduce 
the  chemical conversion of gases a t  t he  hot f i l aaen t  t o  a negligible leve l ,  the  
retarding f i e l d  diode filament w a s  catephoretically coated with a layer of pure 
thorium oxide t o  allow t h e  same y ie ld  of electrons a t  a lower temperature than 
t h a t  of a pure tungsken filament. Also, the  deposited thoripm oxide w a s  localized 
near the ceqtre  of the filameqt i n  order t o  avoid the f a l s e  indication of ta rge t  
work function change could r e s u l t  if the  t a rge t  mount and i t s  s t ructure  were 

electron 'z 



3. RESULTS 

3 1 Background G a s  Environmental Study 

3.1.1 

A mass spec t ra l  analysis of the  background gas 
121 mass s beam scat ter ing chamber was performed using a GE 

Figure 3.1.1 i s  a mass spectrum over 
res idual  gas without the  use of cryo 
3 kilogauss permanent magdet did rvot allow higher mass n'umbers 
t h e  control 
mass  1 amu ( H  atom) peak. 
70 amu i n  which it  i s  possible t o  dis t inguish some of the lower in t ens i ty  peaks. 

on the  ion focbssing voltage did dot extedd high enough t o  obtain the 
Figure 3.1.2 i s  an enlarged mass spec t ra  from 12 t o  

The relat ionship of the above mass spectruia t o  actQal p a r t i a l  
pressures exis t ing i n  the scat ter ing chamber i s  not straightforward since the  mass 
spectrometer i s  essent ia l ly  i n  a closed volume except f o r  a 1 l i t r e / sec  conductance 
(through the o r i f i ce )  t o  the  10-9 t o r r  region of t he  sca t te r ing  cha&er. 
been found tha4 oxtgassing products from the w a l l s  of the gauge i n t e r i o r  take 
between 1 - 2 hdws t o  achieve t h e i r  equilibrium pressure levels a f t e r  the  filament 
of the  detector has been turned on. 
mately the same r a t i o  except f o r  mass 16.33 amu which remains r e l a t ive ly  constant 
throughout the filament outgassing operation. The presence of t h i s  non-integral 
setelLi te  peak of 16 amu i s  a common occurz-ence i n  mass spectra  taken using 
a sicgle-focussing mass spectrometer and has been discussed by Robins ( R e f .  61). 
It i s  due t o  the electronic  desorption of oxygen atoms from t h e i r  adsorbed phase 
or the ion source electrodes.  Such desorbed atoms possess a k ine t ic  energy of 
ah0-i-L 6 eV i n  addition t o  the focussing voltage and are focussed at a d i f fe ren t  
point on the  spectrum. Applying the  standard cracking r a t i o s  one f inds  the pre- 
sence of water vapour, ammonia, methane, carbon dioxide,oxygen, ditrogen and 
carbon monoxide. 
hes not been performed since the large outgassing source within the  gauge volume 
i t s e l f  has masked the actual  s i tua t ion  ex is t ing  i n  the main body of the sca t te r -  
iP.g chamber. The use of cryopumping i n  the region surrounding the  gauge o r i f i c e  
h2.d very l i t t l e  e f fec t  on the  mass spectra. 
recorded f o r  mass 28 wher, cryopumping w a s  added, implying t h a t  the  dector w a s  i n  
p a t  sensing the environment outside the gauge volume. The f a i l u r e  f o r  even 
l i qa id  nitrogen pumping t o  remove water vapour was indicat ive t h a t  this peak was 
due t o  an 
suggest t h a t  the  p r i m e  gaseous components i n  the scat ter ing system are hydrogen, 
nitrogen and carbon monoxide i n  order of decreasing concentration. The hydrogen 
w z s  found t o  account f o r  80 t o  90% of the  t o t a l  pressure, with the majority of the  
remaining gas being nitrogen and carbon monoxide. $he retarding f i e l d  diode re- 
s u l t s  of Section 3.1.3 support the above inferences. Note t h a t  the argon peak 
a t  40 amu i s  of s ignif icant  abundance, contrary t o  the  leve ls  observed i n  most 
bhkeable s t a in l e s s  s t e e l  systems of t h i s  type. 
system had experienced a large amount of argon pumping and ion pumps are  known t o  
have a ttmemory" fo r  the  i n e r t  gases (Ref 
pumping of other gases a f t e r  exposure t o  argon w i l l  r e s u l t  i n  re-evolution of the  
l a t t e r .  When l iqu id  helium cryopumping was employed i n  the region surrounding the  
detector ,  the ar on pressure l eve l  within the gauge volume f e l l  quickly t o  a new 
low l eve l  (e torr) because of the  weak adsorption ( physisorption) of argon 
on the room temperature surfaces within the  detector volume. This very low 
pressure l eve l  i n  argon allowedthe detection of the re f lec ted  beam since re f lec ted  
f lux  s ignal  levels  were typ ica l ly  10 times t h i s  value. It i s  not possible with the 

It has 

All peaks (including H2) decrease i n  approxi- 

A quant i ta t ive analysis on the amount of each of these gases 

A 10% decrease i n  peak height w a s  

outgassing phenomenon within the  gauge volume. Qualitatively the  data  

This i s  due t o  the  fact  tha t  t he  

62) j t h a t  i s  t o  say t h a t  continuous 
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present system t o  detect  a beam composed of a gas having a long outgassing time 
constant i n  the gauge volume. 

An increase i n  the t o t a l  pressure (A Ptotz  3 x t o r r )  w a s  re -  
corded i n  the sca t te r ing  chamber when the i so l a t ion  valve ( i n  bellows l i n k  section, 
Fig. 2.2.1) a t  the collimation chamber w a s  opened. A study of the mass spectrum 
indicated t h a t  the only peak which increased a f t e r  opening t h i s  valve was hydrogen. 
The re-emissioqeffects  found by Rozgonyi (Ref. 63) and ve r i f i ed  by t h i s  experi- 
ment, suggest that t h i s  r i s e  i n  hydrogep may be due t o  an evolution from the  pump 
and the chamber w a l l s  upon the admittaqce of a gas with a higher mass such as 
typ ica l ly  found i n  %he diffusion ppmp environment as discussed i n  Section 2.2.3. 
I n  the present system, nitrogen and argon have both been shown, t o  cause large 
increases i n  the ambient hydrogen pressure when admitted. Evolution of carbon 
monoxide has also been observed upon the addition of nitrogen. The interplay be- 
tween gases makes it d i f f i c u l t  t o  ca l ibra te  the mass spectrometer against, t o t a l  
pressure changes recorded by the  Bayard-Alpert ionizat ion gapge when such gases 
are admitted. 
Masses 36 and 38 amu have been observed by Rozgonyi t o  appear ;upon the addition of 
argon to an ion pumped system; t h i s  was a l so  observed i n  the present system, as 
well as an increase i n  mass 28 and hydrogen. 

Hydrogen was not found t o  effect ive i n  re-emittingoFher gases. 

3.1.2 Flash Desorp$ion Results 

The time required f o r  saturat ion of hydr3gen at the surface was 
determined by flashing the t a rge t  t o  20OO0C a-t, time zero and then allowing the  
gas from the  sca t te r ing  chamber (no cryopumping,) t o  adsorb f o r  a time "t"; the 
t a rge t  was then flashed again t o  20OO0C and the peak height growth recorded as 
proportional t o  the amount of gas adsorbed. Figure 3.1.3 i s  a plot  of the hydrogen 
gas coverage as a function of time a f t e r  f l a s h  fo r  both a polycrystall ine (electron 
bombardment filament) tungsten surface and the t a rge t  
crysFal). 
more rapidly f o r  the s ingle  c rys t a l  than for  the polycrystall ine tungsten. 
corroborates 
Estrap and Anderson (Ref. 64) and those o ta ined with polycrystall ine tungsten 

carbon monoxide (Ref. 66) i s  occurring which kends t o  deplete the qpantity of 
hydrogen a t  the  surface a f t e r  several  minutes. Included i n  Fig.  3.1.3 i s  the 
curve for  the amount of mass 28 on $he polycrystall ine tungsten surface versus 
the adsorption time. 
t o  several  hours i n  which it has bee0 found tha t  a leveling off t o  saturat ion 
begins t o  occur a f t e r  3 hours. 
was then made, and the  data plot ted i n  Fig. 3.1.3 with a normalization t o  unity 
as f o r  the case of t h e  hydrogen curves. 

The r e su l t s  of sect ion 3.1.3 ( t o  be discussed) ve r i fy  t h a t  replace- 
ment of the hydrogen by carbon moqoxide i s  occurring a t  the surface,  but tha t  con- 
current with $his  replacement i s  an adsorption of nitrogen in the vacant l a t t i c e  
s i  es  left; by the hydrogen. 
i s  more complex than ant ic ipated from the  r e su l t s  of t h i s  sect ion and khat the 
growth of the  mass 28 peak i s  due t o  adsorption of bow nitrogen and carbon monoxide. 

(tungsten (100) s ingle  
The first r e s u l t  i s  t h a t  the saturat ion time f o r  hydrogen i s  reached 

This 
the comparison be$ween the r e s u l t s  obtained wi$h s ingle  c rys ta l s  by 

reported i n  Ref. 65. The second r e s u l t  i 1 \hat a replacement phenomena involving 

The saturat ion l eve l  has been obtained from data taken out 

An estimate of the time required f o r  sa tura t ion  

It suff ices  t o  say here t h a t  the replacement process f 



3.1.3 Retarding Fie ld  Diode Results 

Background G a s  Analysis 

The retarding f i e l d  diode method, as discussed i n  Section 2.5.5, 
was used t o  i n f e r  

gases. Liquid nitrogen pumping w 
the  gas causing the posi t ive cha 
nitrogen and gives a posi t ive change i n  work function (Ref. 66) and i s  a prime con- 
s t i t u e n t  i n  t h e  background gas i s  carbon modoxide. 
removed the negative var ia t ion  as well  (see Fig. 3 .1*4) ,  implying t h a t  t h i s  gas 
was nitrogen since Estrup and Anderson (Ref. 67) have found nitrogen t o  give a 
negative change on (100) tungsten. I n  t e s t i n g  the  e f f ec t  on t h e  work function 
of the  large a m o w  of hydrogen gas present i n  the system, the diode leve l  showed 
no change upon adding greater  amounts ( AFH2 1-" lom8 t o r r ) .  
sa turat ion i n  hydroged i s  indeed reached rapidly as suggested by the data of the  
f l a s h  filament desorption study (Section 3.1.2). A thermal e f f ec t  which ex i s t s  
a f t e r  the ta rge t  i s  flashed ( typ ica l ly  of 2 minutes duration) masks the  changes 
i n  work function due t o  gas adsorption during t h i s  in te rva l .  -Figure 3.1.4 i s  thus 
a var ia t ion  i n  the work function a f t e r  thermal e f f ec t s  have become negligible and 
necessarily a f t e r  hydrogen saturat ion has taken place. 

Adding l iqu id  helium pumping 

This implies t h a t  

!€he complex s i tua t ion  created by the sirihzltaneous adsorption of 
three gases a t  the surface prevents a quarltitative comparison with the  work of 
Estrup and Anderson. The subsequent adsorption of nitrogen on a polycrystal l ine 
t-mgsten surface which has been saturated with hydrogen has beerr studied by 
Rigby (Ref. 68) i n  which he has found t h a t  -20% of the surface remaids available 
f o r  nitrogen adsorption. 
using the  work function 
as found by Estrup and Anderson, t h  change expected i n  the present case would be 

the saturat ion l eve l  fo r  nitrogen i s  close t o  t h i s  value. The adsorption of the  
carbon monoxide i s  a complex problem i n  the  present s i t ba t ion  since replacement of 
the hydrogen can occur, as found i n  the  s tudies  of Robins (Ref. 69) and Rigby 
( R e f .  68). 
can adsorb appreciably on a nitrogen saturated polycrystall ine tungsten surface 
and the same r e s u l t  has a lso been observed by Estrup and Anderson (Ref. 67) fo r  
(100) tungsten. 
tungsterk found by Estrup and Anderson i s  + 430 mv. 
of Fig. 3.1.4 shows t h a t ,  f o r  the  present work, the change with CO i s  about of 
t h i s  magnitude. Note t h a t ,  i n  adding nitrogen t o  the syskem, the amount of CO 

Assuming t h i s  t o  be the case f o r  (100) tungsten and 
change corresponding t o  nitrogen saturat ion (A$ = - 650 mv) 

130 mv. Curve B (obtaided with l i q  2 i d  nitrogen pumping) of Fig 3.1.4 shows t h a t  

Rigby has a l so  shown i n  another study (Ref, 70) t h a t  carbon monoxide 

The change i n  work function f o r  CO adsorption on clean (100) 
Curve B (nitrogen gas admitted) 

e t o  re-emission from the ion pump. 
ated t h a t  hydrogen w a s  also evolved upon admittirig nitrogen thus 

A mass spec t ra l  analysis (Section 

assuring t h a t  a saturat ion l eve l  i n  hydrogen w a s  reached even more rapidly.  
e f fec ts  on the argon beam sca t te r ing  r e s u l t s  of t h i s  saturat ion leve l  of hydrogen 

The 

i n  Sectiorl 3.2.2. 

- Beam Analysis 

A check on the impurity l eve l  i n  the  beam w a s  made under normal 
Liquid helium vapour pumping i n  the region re f lec ted  f lux  measuring colpditions. 
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surrounding the target  prevented contamination of 
monoxide and any other 

Figure 3.1.5 i l l u s t r a t e s  the chang 
OCCUTS when an argon beam at  O.&r5 eV i s  incident on 
( 1/50 of nitrogen saturation) i n  the 
negative direct ion and suggests t ha t  there i s  a nitrogen co 
and/or the hydrogen i s  heing removed by %he impinging beam 
bardment r a t e  of the hydrogen gas on 
environment of the scattering chamber 
1013 hydrogen malecules/cm2sec This 
from t h a t  of the beam and so  it i s  unlikely tha t  the beam w i l l  be effect ive i n  
removing the adsorbed hydrogen. The s l igh t  change i n  the work function for  the 
argon beam on the surface is  thus believed t o  be due t o  a nitrogen contaminant i n  the 
beam possibly due t o  an air leak i n  the gas supply l i q e e  
t o  2O0O0C every 20 minutes during $he course of a scat ter ing experiment t o  remove 
any possible e f fec t  of this s l igh t  adsorption. 

. The bom- 

The t a rge t  was flashed 

The change i n  work function for a nitrogen beam formed by the 
same source 
shown i n  the above figure. 
reaches saturation ( fi 100 mv) i n  n i t r o  en i n  about 30 minutes. 

beam) at  the surface, the st icking probabili ty of 0.18 eV nitrogen on clean (100) 
tungsten i s  estimated t o  be 0,001. 
t ion  tha t  the nitrogen adsorbs only on 2% of the surface covered i n  hydrogen and 
t h a t  4 x 
(from Estrup and Anderson, Ref e 67 and corroborated i n  t h i s  experiment) 
st icking probabili ty quoted by the above workers for  the adsorption of 300°K 
nitrogen on clean (100) tungsten i s  0.55. 
an estimate of the st icking probabili ty of a beam a t  t h i s  energy on any surface 
has not been reported t o  date. 

conditions as for  the argon beam but of energy 0.18 eV, i s  also 
Under these conditions the hydrogen covered surface 

With a typical 
f lux  of 5 x 1013 nitjrogen molecules/cm 9 sec ( typical ly  measured for  a pure nitrogen 

This has been calculated following the assump- 

l a t t i c e  sites/cm2 are available f o r  adsorption i n  the clean s t a t e  
The 

To the best  of the author's knowledge 

3.2 Scattering Results 

3.2 1 Determination of Beam Properties and Scattered Flux In tens i t ies  

Molecular beam source 
ation temperature were s e t  by 
was inferred. F i r s t ,  the  source 

e at  room value 
by the pumping throughput of the pumpi g system) I n  par t icular ,  it was the 

pumping (coL1Fmation c E amber) which was limited, since 200 microns 
l i ne  of the 3 
he mass flow 

the maximup pressure 
t o  Po/(To)T dn2 
r a t s e  and & 

effect ive diamet rgon beam energy a plot s 
i n  Fig. 3.2.1 (derived from the equations f o r  a seeded nozzle beam (Ref. 36)) 
permits choosing a mixture and source temperature t o  obtain t h i s  energy. T h i s  mix- 
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t u r e  was then s e t  on the  flow meters proirided on the gas supply l i n e  t o  the  beam 
source and each component of flow increased (with the source a t  room t e  perature) 
u n t i l  the phmping l imi ta t ion  w a s  reached. The pressure a t  t h i s  point ( ~ o R T )  w a s -  
recorded along with the  room temperature value (TORT). The source w a s  then heat- 
ed maintaining the  flows for  the two gas species (seed and ca r r i e r  ggses) constant 

A t  t h i s  poi& it i s  known t h a t  ~ 

ToH has been reached. 
through Reynolds number considerations and i s  1.0147 fo r  To 

evolved considerable quadtikie s of contaminants from the  oven t o  cause the impurity 
l eve l  of the beam t o  be i n  doubt. 
of sufficieri t  accuracy t o  allow a determination of t he  temperature t o  within 5%. 
The &e of calculated values of energy such as those p lo t ted  i n  Fig. 3.2.1 has been 
discussed i n  Section 2.1 and as s ta ted  there ,  there  i s  evidence available i n  the  
l i t e r a t u r e  t o  show t h a t  the calculat ion of ve loc i t ies  and energies from source 
values introduces very l i t t l e  e r ror  (< 5%) provided ce r t a in  conditions a re  met 
a t  the skimming posi t ion i n  the f r e e  j e t .  The beam system w a s  operated well  out- 
side the conditions causing appreciable s l i p  between seed and c a r r i e r  gases or 
serious skimmer interference with i t s  attendant wide veloci ty  d is t r ibu t ions .  
Figure 3.2.2 i s  a p lo t  of the molecular beam veloci ty  determined by the same pro- 
cedure as f o r  the energy. For a s a t e l l i t e ,  the o r b i t a l  veloci ty  i s  
8 x 105 cm/sec, while the maximum veloci ty  of argon achieved wikh t 
source conditions (To = 1000°K, l%A-g%He) i s  about one t h i r d  of t 

u n t i l  PoH was reached as determined by the quantity P q T  (TO /TOR )%(d*RT/&H)** 
the  a p r i o r i  determined v a u e  o? the  tem-perature 

The r a t i o  (d.RT/d%I2 has been determined by Davis ( 

the  highest temperature used throughout these runs since 

The measurement of Po w a s  made on a Heise gauge 

A t  the  start  of a run the  scat tered f 
the incident beam posit ion and the t a rge t  re t rac ted ,  allowing the 
enter the detector d i rec t ly .  The geometry w a s  such t h a t  the detec 
(0 .3  cm diameter) was larger  than the beam s ize  (0.2 
detector "swallowing" the incident beam completely. 
( f lux  i n t o  detector = f lux  out of detector)  t h i s  mean 
i n t o  the  detector i s  +nE Adet/Abeam where "n" i s  the 
ed by-the stagnated beam,"F" i s  the mean molecular ve 
and Adet alld Abeam are  the detector o r i f i c e  and beam 
principle ,  the absolute value of the incident  beam f l  
t h i s  expression i f  the mass spectrometer ca l ibra t ion  required t o  li 
height t o  the density "n" were known. However, i t  became obvious t h  
re-emission problems (Section 3.1.1) encountered with the  ion pump, t h a t  a change 
i n  t o t a l  density 
reference standard when cal ibrated a t  higher pressures against a McLeod gauge) 
could be due t o  a large percentage of gas other than the beam gas. An absolute 
f lux  ca l ibra t ion  w a s  obtained by measuring the Bayard-Alpert pressure r i s e  when 
argon w a s  admitted t o  the  system, and recording the  large increase i n  the hydrogen 
which evolved due t o  re-emiss'on from the pump. Evenunder conditions i n  which a 
large amount of argon ( E 10- 8 
i n  the 
t o t a l  pressure. Based on t h i s  f a c t ,  the  mass spectrometer output w a s  cal ibrated 
f o r  hydrogen and the sensi t ivi%y (amps/torr) calculated fo r  argon by using the 
appropriate ionizat ion cross-sections available i n  Ref. 71. Secondary electron 
e jec t ion  probabi l i t i es  of a silver-magnesium surface for  hydrogen and argon ion 
bombardment do not d i f f e r  appreciably at 2kV ( the poten t ia l  supplied t o  the first 
dynode of the  electron mult ipl ier)  as shown by Ref. 72 and thus t h i s  correction 
was not included. I cident f lux  measurements made using the  above method were 

as recorded by the Bayard-Alpert gauge (which ac t s  as a secondary 

admitted t o  the system, the increase 
amount of hydrogen was h t o  s t i l l  accoult f o r  90 t o  95% of the  

kypically 101.3 t o  lo1 j? argon atoms/cm2sec depending orf the source conditions used. 
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With the d i f f i c u l t y  of obtaining absolute f lux levels  i n  the present 
system the following procedure, whep measuring scat tered number f lux  dis t r ibi i t iocs ,  
was adopted. 
beam w a s  recorded before and a f t e r  the experimental run. This value (corrected f o r  
the f a c t  t h a t  the  detector "swallowed" the iqcident beam en t i r e ly )  was used t o  
normalize the re f lec ted  s ignals  (peak heights a l so  proportional t o  f lux)  found as 
the detector w a s  ro ta ted  about the  ta rge t .  
(1~/1~)  which when combined with t h e  known dimensions of the detection system 
(distance of detector o r i f i c e  from the  t a rge t  = 9.6 em, incident beam diameter = 
0.2 cm) gives the probabili ty of being scat tered in to  the given angular direct ion.  
The r a t i o  of the number of par t ic les  per second per s teradian (q)  re f lec ted  a t  the 
angle 9~ t o  the t o t a l  flow incident (No) i s  obtained from the expression */NO = 
q.94 x 103 Q/I0. For convenience t h i s  conversion i s  included a t  t he  bottom of 
each f igure  displaying scat tered number f lux  d is t r ibu t ions .  It i s  noted tha t  most 
previous work display f lux  and in- f l igh t  number density d is t r ibu t ions  i n  a rb i t ra ry  
unit$, making it d i f f i c u l t  t o  compare, f o r  example, the trends i n  peak i n t ens i ty  
with energy t o  a given theory. The present method of p lo t t ing  should be much more 
convenient f o r  t h i s  purpose. (1 t o  2 hours duration) 
the two values of Io before and a f t e r  . a  run usually remained within 10% of each 
other.  

The argon peak height ( i n  amperes) due t o  shgnatio 'n of the incident 

The r e su l t  w a s  a normalized f lux  

B'OZ-I a,, typical\  experimeni 

When a run w a s  t o  be performed, the beam was l e t  i n t o  the scat ter ing 
chamber and allowed t o  s t r i k e  the t a rge t .  The detector was f i r s t  positioned be- 
hind the t a rge t  and .thus sensed any increase i n  argon background pressure due t o  
the beam. Helium vapour at 20°K w a s  then l e t  i n to  the dewar surrounding the ta rge t  
and the argon background pressure (peak height) monitored as pumping began. 
the p a r t i a l  pressure l eve l  of argon reached a value which was l / lOth or l e s s  of the 
expected re f lec ted  s ignal  leve l ,  the  t a rge t  w a s  removed from the dewar, f lashed 
several  times i n  the 10-9 t o r r  environmept of the ion pump, then heated fo r  10 minutes 
a t  15OO0C i n  the same environment, and then ra i sed  while s t i l l  hot i a t o  the dewar 
and the beam. I was then allowed t o  cool i n  the contaminant f r ee  (except for  
hydrogen) envir dt nment of the  cryopump. The reason f o r  keeping the t a rge t  hot 
while ra i s ing  the t a rge t  i n t o  the dewar w a s  t o  t r y  and prevent possible contamina- 
t i on  from the nitrogen and carbon monoxide gases outside the cryopumped region. 
Before the measurements were begun, the ta rge t  w a s  once agaia flashed t o  20OO0C and 
then allowed t o  cool. 
region every 20 minutes during the CQmse of an experimenF. 
w a s  noticed i n  the  argon background (< 
the  targelj w a s  f lashed once; however, 4 or 5 f lashes  i n  succession caused an 
apprecia l e  change, bpt pump-down t o  the  or ig ina l  pressure leve l  was rapid a f t e r  
cesation of the l a s t  f lash .  

Gnce 

The t a rge t  w a s  a l so  flashed t o  20OO0C i n  the  cryopumped 

t o r r )  of the cryopump region when 
No discernible  change 

9 
When a f lux  distiribution was measured, 30 or more points on the d is -  

Agreement between points taken i n  one or the other 
tr ibukion both i n  the clockwise d i rec t ion  of de?iector ro ta t ion  and i n  the counter- 
clockwise d i rec t ion  were taken. 
d i rec t ion  w a s  good, with about the same amount of s ca t t e r  f o r  each as found for  
successive points and a t t r ibu ted  t o  e lec t ronic  noise i n  the electron mult ipl ier .  
A$ various times during the  measuremeqts, surface and beam conditions were repeated 
and corresponding re f lec ted  d is t r ibu t ions  obtained; r e su l t s  were found t o  be quite 
reproducible. 

The'manner of recording the scat tered f lux  d i s t r ibu t ion  was t o  move 

d s ignal  (peak height of argon) at the posi t ion f o r  several  
the detector t o  the  desired measuring posit ion (usual ly  i n  5 degree increments) 
and record the r e f l ec  
sweeps of the ion foc sing voltage. It w a s  not possible t o  posit ion the  instru-  
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ment on the  peak maximum and record a DC readout with 
s t a b i l i t y  of the high voltage supply provided wikh the detector was not adequate. 
It i s  believed tha t  the use of a s table  high voltage supply would accomplish t h i s  
and make data taking much easier.  This is ther 
t o  be made on the present system. 

detector posit ion since the 

By sweeping the  ion focussing 
cording the argon peak height repeatedly, it became 
electronic  noise was causing the peak hei  
a t t r ibuted t o  e i the r  electronic noise w i t  
e f fec ts  on the ion focussing lens due t o  gase 
w a s  t o  take several of these peak heights 
i s  plotted on the ordinate of the  scattered f lux dis t r ibut ions a f t e r  normalization 
by the incident f l b .  Note tha t  the electronic noise problem was not recor ed 
i n  the case of the incident f lux  since s ignal  levels  were of the order of 10 times 
greater than f o r  the ref lected flux. 
t ron  multiplier increased slowly throughout the experimental runs due t o  contamina- 
t i on  i n  the multiplier region. Accompanying t h i s  residual current increase was 
an increase i n  the electronic noise leve l ,  making it d i f f i c u l t  t o  obtain accurate 
readings of the scattered number fluxes. When t h i s  noise level  became s igni f i -  
cant (usually a month a f t e r  react ivat ion) ,  the multiplier was reactivated with 
hydrogen employing the technique discussed i n  Section 2.3.4. 
several times without detrimental e f fec t  t o  the multiplier.  A s l i gh t  decrease i n  
the multiplier gain was observed over the same period of time, but was not a 
severe l imitat ion on the measurements. 
kime 1 - 2 hours) the condition o f 4 h e  multiplier remained re la t ive ly  unchanged. 

$ 
The res idua l  background ren t  of the elec- 

This w a s  done 

For a par t icular  experimental run (running 

Another l imitat ion which made i t s e l f  mahifest was the f a c t  t ha t  the 
CC$ peak a t  44 amu was a large outgassing product i n  the mass spectrometer which 
could nat be removed by the l iquid helium pumping i n  the region surrounding the 
ta rge t .  
t o  be long i n  order t o  resolve the two peaks. The r e s u l t  was tha t  a f a s t  scan 
over only the mass 40 peak with the 
poss ib i l i ty ,  and data  had t o  be taken point-by-point as described above. The re-  
moval of the C 0 2  by Waking the mass spectrometer t o  300°C by means of the small 
oven surrounding the ionization and electron multiplier regions w a s  uhsuccessful. 

The presence of t h i s  peak adgacent t o  mass 40 meant t ha t  the  sweep timehad 

detector moving simultaneously was not a 

I n  the sections %o follow, the experimentally measured scattered 
f lux  distribu'oions w i l l  be discussed i n  de t a i l .  Results have been obtained for 
an argon beam at  45 degrees incidence and under varying conditions of gas surface 
coverage and incident beam energy. A room temperature surface was maintained 
throughout the f lux  measurements, as determined by a thermocouple attached t o  the 
target  edge. 

3.2.2 

The ef fec t  of gas monolayers on the scat tered number f lux  
d is t r ibu t ion  f o r  a 1.35 eV incident argon beam i s  shown i n  Fig. 3.2.3. Run No. 3 

cleanest s t a t e )  w a s  obtained by making sure tha t  the  residual gases (mainly 
d N2) from the 10-9 t o r r  region of the iod  pump did not adsorb appreciably 

a t  the surface. This s t a t e  was achieved by rais ing the ta rge t  hot (1500°C) in to  
e low-con%aminant region of the cryopump and flashing t o  20OO0C when up i n  t h i s  
gion. From previous evidence the sur fa  1 gases except a 

saturat ion co e of hydrogen. There i s  the  presence of 
s sa tu ra t i  v e l  i n  hydrogen(which w ash desorption 
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measured and with t h  
$0 the f a c i l i t y  with 

energy required t o  break the 

layer on a tungsten adsorbent i s  2-3eV compared t o  0.7 eV f o r  the activation 
energy f o r  migration (Ref 74) > j o  Since the conditions of the present experiment 
are  closely re la ted  t o  the satyraked levels  used by Rideal and Sweett, it i s  l i ke ly  
tha t  the low valve of 0.02 eV f o r  the  activation energy of migration w i l l  prevail .  
It seems l ike ly  t h a t  energetic par t ic les  such as are employed i n  t h i s  experiment 
would be effect ive i n  moving the adsorbed hydrogen from t h  co l l i s ion  s i t e .  Using 
a typ ica l  bombardment r a t e  of the beam on the surface (10" particles/cm sec) ,  it 
has been calculated tha t  every l a t t i c e  s i t e  i s  struck once per second, thus allow- 
ing the surface t o  recover from one co l l i s ion  i? time f o r  another. Thus i t  i s  
suggested t h a t  hydrogen adatoms are moved from one s i t e  t o  another without the 
surface becoming depleted i n  hydrogen. There i s  a l so  evidence from the work of 
Datz e t  a1  (Ref. 15) t ha t  a saturation level  of hydrogen on a platinum surface 
did not a f fec t  the re f lec t ion  of either helium or deuterium. (Adsorbed oxygen 
had a marked e f f ec t ,  t o  the extent t ha t  it rendered the scattered d is t r ibu t ion  
t o  tha t  of a cosine-law ref lect ion.)  

2 

The f ac t  t ha t  the r e su l t s  were not affected by the increase i n  the  
surface temperature i s  most l i ke ly  due t o  $he f a c t  t ha t  a t  the beam energy levels  
the e f fec t  of thermal motion of the l a t t i c e  on the scat ter ing not very import- 
ant ( i . e .  the r a t i o  of thermal agi ta t ion ve loc i t ies  i n  the l a t t i c e  t o  beam 
ve loc i t ies  a t  these r e l a t ive ly  high beam energies i s  quite small). 
cube model (Section 3.2,5),which depends t o t a l l y  on the e f fec t  of the thermal 
motion of the l a t t i c e  t o  produce spreading of the re f lec ted  par t ic le  t r a j ec to r i e s  
w i l l  ve r i fy  tha t  thermal ve loc i t ies  cannot be importart, The surface w a s  not 
heated continuously d k i n g  a run since the increased radiat ive heat load on the 
l iquid helium consumption would be intolerable .  Instead, temperature e f f ec t s  
were studied by flashing the target  t o  20OO0C fo r  15 seconds and then-allowing 
the temperature t o  fa11 back t o  room v 

The "hard" 

ue (See, 3.2.1). 

Run No.  6 of Fig. 3.2.3 was obtained for a partial- coverage of 
carbon monoxide and rogen on the hydrogen-covered surface This p a r t i a l  
coverage was obtain by al3.owing the target  t o  main in the 10-9 t o r r  
ment of the sca t  chamber f o r  30 minutes be e ra is ing it i 
region. Because interactions taking place between t 
it i s  d i f f i c u l t  t o  say exactly how much nitrogen and carbon monoxide has adsorbed, 
as well as how much hydrogen has been desorbed. 
ing the background gases i n  the scat ter ing chamber t o  adsorb on the surface over 
a period of 3 days. 

Bun No. 4 was obtained by alkow- 

Robins and Rigby (Refs 69 and 70) have found tha t  a f t e r  a 
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period of hours tha t  only 30% of the surface remains covered i n  hydrogen a f t e r  
exposure t o  carbon monoxide and t h a t  a large arnounb of carbon monoxide can adsorb 
i n  t h i s  same time in te rva l  on a surface already covered i n  nitrogen. I n  view of 
these r e su l t s ,  the s t a t e  of the surface fo r  run No. 4 i s  believed t o  almost. be en- 
t i r e l y  covered i n  casbon monoxide with a small quantity 
s t i l l  remaining. It i s  interest ing t o  rvote t h  
the surface (Ref. 74) and thus the beam i s  not 
ing it from the bombardment s i te  since it takes about 4 eV t o  desorb it. 

It can be seen from Figure 3.2.3 tha t  the addition of re la t ive ly  
small quant i t ies  of the adsorbed species CO and N2 does not a f fec t  the posit ion of 
the  maximum greatly;  however there  are fewer atoms scattered i n  the direct ion of 
the maximum ref lected flux add more scat tered back in to  the  incoming beam quadrant 
(backscattered: direct ion) .  Adding a large percentage of CO t o  the  surface 
(Run No.  4)  had the e f fec t  of both widening the  d is t r ibu t ion  as for Run No.  6, 
but a l so  sh i f t ing  the  maximum towards the surface. T h i s  s h i f t  towards the sur- 
face can be understood i f  the re f lec t ion  process i s ,  t o  the  f i rs t  order, governed 
by the mechanics of simple binary col l is ions between the gas atom and one surface 
atom. When the l i gh te r  adsorbent atoms become the co l l i s ion  partner, the resul t ing 
leaving vector f o r  the ref lected argon w i l l  be s t i l l  fur ther  below the specular 
angle. I n  fac t ,  Jackson's model (Ref. 27), which includes hard sphere scattering, 
an a t t r ac t ive  potential ,  and multiple col l is ions with several surface atoms when 
these occur, suggests %hat under the present experimental conditions tha t  the  
majority of the molecules are ref lected a f t e r  only one col l is ion.  The model, 
fo r  increasing mass r a t i o  of gas t o  surface atom, predicts a shif t  i n  the dis- 
t r ibu t ion  maximum towards the surface as found here experimentally. Although 
the addition of an adsorbed gaseous layer onto a surface i s  not s t r i c t l y  equivalent 
t o  chaxtging the mass r a t i o ,  it i s  believed tha t  thetsend predicted w i l l  be the 
same. 
tirary t o  the trend found a t  the lower energies (Refs. 7 and 15). 

This s h i f t  i n  the maximum (due t o  gas coverage) towards the surface i s  con- 

A n  important r e su l t  of Fig. 3.2.3 i s  t h a t  a t  no time, even under 
conditions of extreme surface contamination (Run No. 4), did the form of the 
dis t r ibut ion follow the cosine l a w .  A cosine d is t r ibu t ion  calculated from the 
incident beam flow fo r  these experimerks and normalized on the same scale as  
Figure 3.2.3 would have a maximum value of I R / I ~  x lo4 
An estimate of the number of argon atoms c o n t a i e i n  the centra!? peak of the dis- 
t r ibu t ion  fo r  Run No. 3 of Fig. 3.2.3 w a s  made by considering the d is t r ibu t ion  t o  
be a body of revoltkion about the maximum posit ion and symmetric fo r  20 degrees on 
e i ther  side of maximum. The normalized f lux  scale on the ordinate was converted 
t o  the number of argon atoms/sec s t r ik ing  the detector position a t  angle OR 
divided by the t o t a l  incident flow. 
segments and weighing the signal at  the centre of each by the corresponding angle, 
'70% of the incident par t ic les  were accounted for .  
theore t ica l  considerations, most of the reflected par t ic les  i n  t h i s  r e l a t ive ly  
narrow distribubion have veloci t ies  resul t ing from binary col l is ions a't the sur- 
face and hence are  very incompletely accommodated. 

1 a t  €3' = zero degrees. 

By dividing the distribu%ion i n t o 7  degree 

A s  suggested by Jackson's 

Figure 3.2.4 presents similar r e s u l t s  t o  those i n  Fig. 3.2.3 ex- 
cept f o r  a lower incident argon beam energy (0.25 eV) . 
i s  noted for  p a r t i a l  coverages of carbon monoxide and nitrogen, with very l i t t l e  
s h i f t  i n  the maximum, but a reduction of the signal a t  t h i s  position and an in- 
crease i n  the backscattered direction. 

The same general behaviour 

2% 



with increasi  

surface condition of hydrogen saturation only. A s  discussed previously i n  Sec. 
3.2.2 t h i s  represents the cleanest s t a t e  achievable i n  the present system fo r  a 
room temperature ta rge t ,  and the experimental r e su l t s  showed tha 
is  equ iva len t to  a gas f ree  tungsten surface i n  so far as sca t te  
argon i s  concerned. The treqd with energy i s  idenFical t o  tha t  found i n  the case 
where there was p a r t i a l  coverage of CO and N2, except khat the dis t r ibut ions are  
narrower and the signal a t  the maximum posit ion i s  s ignif icant ly  greater.  Figure 
3.2.7 i l l u s t r a t e s  the var ia t ion of t h i s  maximum signal with incident beam energy. 

One w i l l  notice $hat Run No.  2 of Fig. 3.2.6 has considerably more 
sca t te r  i n  it than any of the other dis t r ibut ions measured. This sca t te r  arose 
from an e l e c t r i c a l  noise problem i n  the electron multiplier which could not be 
r ec t i f i ed  by means of the hydrogen $reatment discussed i n  Sec. 2.3.4. 
thought t ha t  possibly t h i s  data (taken f o r  the cleanest surface s t a t e )  was dis- 
playing some structure pear the maximum, but. the above noise problem prevented any 
def ini te  ver i f ica t ion  of t h i s .  
and improved baking of the detector gapge volume w i l l  r e su l t  i n  
t h i s  speculative point. For the present r e su l t s ,  a smooth curve has been drawn 
throygh the points; it was not believed tha t  usual curve f i t t i n g  procedures were 
warranted for  t h i s  one dis t r ibut ion.  

It was 

It i s  hoped tha t  replacement of the multiplier 
c l a r i f i ca t ion  of 

3.2.4 Comparison with Exist,ing Experimental Lower Energy Work 

Figure 3 2 . 8  i s  a comparison of the scat tered number flux dist r ibu-  
t i on  obtained i n  the present work using a 0.25 eV incident beam, with tha t  found 
by Hinchen e t  a1  (Ref. 18) f o r  0.15 eV incident argon on a (110) platinum surface. 
This i s  the bes t  comparison with lower energy work available since both experi- 
ments were performed f o r  the same angle of incidence and surface temperature. 
Also,  both experiments have used a single c rys ta l  surface and the r a t io s  of the  
gas par t ic le  mass t o  the surface atom mass are almost ident ical .  Comparison has 
been made by making the peak heights the same. 

From the comparison between the two r e su l t s  of Fig. 3.2.8 it i s  
found tha t  the  present d i s t r ibu t ion  does not l i e  as far below the specular angle 

experiment , on 

The technique i s  t o  adjust the  

rmation ab0 e molecule 
e 

, since it measures 
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the t o t a l  re f lec ted  numder flux i n  each 
pa r t i c l e s  including those trapped a t  the  
i s  expected t h a t  the d i s  
using the modulation tec . The f a c t  t h a t  t h  
backscattered direct ion i s  consis tent  
i n  t h i s  direct ion i s  much broader ( i . e  
Interpreted i n  trhis manner, the discrepancy lends support t o  
mea ve loc i ty  with sca t te r ing  directiorf found by Hinchen e t  a1 
mean veloci ty  w a s  found t o  be grea tes t  along the surface and l e a s t  i n  the d i rec t -  
ion of the  surface normal. 

Figure 3.2.9 presents a p lo t  of the deviatiod of the posit ion of 
the d is t r ibu t ion  maximum from the specular posit ion ( @ i - O m u )  as a function of 
the normalized beam energy (Ebeam/k Ts),where Ts i s  the surface temperature and 
k i s  the  Boltzmann constant. The normalization is a convenient way of comparing 
the present room temperature r e su l t s  with the widely varying surface temperature 
r e s u l t s  of previously performed lower energy experiments. I n  some cases it was 
necessary t o  heat the surface i n  order t o  assure cleaner surfaces and i n  others 
(Notably Refs. B,  C and D )  elevated temperatures were used t o  obtain ep i t ax ia l  
single c rys t a l  growth when vapour depositing the surface f i l m s .  The lower 
energy points display considerable sca t te r ing ,  suggesting differences i n  the actual 
sarface conditions used. 
negative €Ii - €Im, 
s ca t t e r  i n  the data  points.  Note t h a t  the posit ion of the maximum f o r  these 
higher 
surface s t a t e  (H2 covered) o r  with p a r t i a l  coverage of carbon monoxide and ni t ro-  
gen. The data  point f o r  the one d is t r ibu t ion  taken for  large coverage i n  carbon 
monoxide i s  displaced appreciably from the r e s t  of the data i n  the higher energy 
range. I n  Section 3.2.9 the  displacement of the maximum towards the surface 
f o r  t h i s  one experimental run w a s  discussed i n  d e t a i l ,  with the conclusion t h a t  
the mechanics of the  in te rac t ion  was controlled primarily by binary co l l i s ions  be- 
tween the incoming beam pa r t i c l e s  and the surface atoms. A study of t he  posit ion 
of the d is t r ibu t ion  maximum f o r  argon on platinum w a s  obtained by Hichen e t  a1 
(Ref. 18) and i s  included on t h i s  same p lo t  and shows tha t  they have obtained 
d is t r ibu t ion  maxima closer  t o  the surface for  the lower energies than those found 
with the higher energy beams of these experiments. 
tihe present work, t h e i r  d i s t r ibu t ion  maxima may l i e  lower due t o  the presence of 
surface gas coverage. 
3.2.9 w i l l  follow i n  Section 3.2.5. 

Present r e s u l t s  show a smooth extension t o  s l i g h t l y  more 
valhes a t  the  higher beam energies, with considerably l e s s  

energy r e su l t s  i s  not very different  whether measured fo r  a "clean" 

A s  suggested by the data of 

A discussion of the theore t ica l  curves plot ted i n  Fig. 

Figure 3.2.10 shows a p lo t  of *he width a t  one half  maximum of the 
d is t r ibu t ion  (A@&) fo r  various gas-surface combinations as a function of normal- 
ized beam energy2(Qeam/k Ts). The width a t  one half  maximum i s  a rough measure 
of the narrowness OF broadness of a sca t t e r  pat tern.  For a p a t i c u l a r  surface 
s t a t e ,  the  present re  I ts  show a de f in i t e  t rend with increasing energy, i . e .  the 
d is t r ibu t ion  becomes wider with decreasing energy. The e f f e c t  of adding gaseous 
monolayers t o  the surface i s  a l so  t o  widen the d is t r ibu t ion  but notice t h a t  the 
highest energies are  l e a s t  affected.  The lower energy work appears t o  be an ex- 
tension of the  r e s u l t s  of the cleanest  s t a t e  found i n  the present work although 

a t t e r .  P a r t  of the var ia t ion  i s  due t o  the  f a c t  
r e  used i n  re la t ion ,  and par% of it may be 
i n  the surf d i t ion .  Oman (Ref. 29) has 

.the width of the 
y up t o  a point and 



wider again due t o  s ignif icant  overlapping of the potential  f i e l d  ident 

the present e 
do r e f l e c t  i n  
cube model, 
actual  spherocity of the surface atoms would cause. Taken together, these f ac t s  
may help t o  account f o r  the observed agreement. Note tha t  models f o r  the mono- 
energetic and Maxwellian incident beams become asymptotically close i n  the pre- 
dict ion of (Qi - emax) a t  the higher energies. 

t o  some extent,  average out the direct ional  scat ter ing that the 

The cube model has been derived f o r  lower energy beams where the 
thermal motion of the l a t t i c e  atoms i s  a controll ing factor  i n  the scattering; 

, as suggested i n  Ref. 30, it may be instruct ive t o  apply it t o  higher 
s has been the approach i n  t h i s  report .  
trapping mechanism and depends on the thermal v 
e t o  produce d is t r ibu t ion  width, it i s  not expe 

Since the model does 

successful i n  predicting the parameter A@l ( the width a t  one half maximum) for 
incident energies which are much greater ghan thermal. 
parison of the d is t r ibu t ion  calculated from the "hard" cube model (monoenergetic 
incident beam) and our experimental r e s u l t  at 0.25 eV. 
considerably narrower dis t r ibut ion,  and the discrepancy becomes even more 

Figure 3.2.11 i s  a com- 

The theory predicts a 

d a t  the higher energies as shown i n  Fig. 3.2.12 f o r  1.35 eV. The 
the "hard" cube model contains no mechanism t o  permit out-of-plane 



4 CONZLUSIONS 

The main objective of the  present work w a s  t o  provide r e l i a b l e  data 
on the sca t te r ing  of fast argon atoms from well characterized surfaces f o r  com- 
parison with concurrent theore t ica l  models appropriate f o r  the  energy range and 
commensurate with s a t e l l i t e  f l i g h t .  
t i o n  of a monoenergetic i n e r t  gas beam from a well  characterized s ingle  c rys t a l  
surface w i l l  allow t h i s  t o  be done with a good measure of confidence. 
ant ic ipated that $he above theories  w i l l  be able t o  in fe r  from these r e su l t s  both 
the energy and momentum accommodation coeff ic ients  s o  g rea t ly  desired f o r  gas- 
surf ace interact iops i n  t h i s  energy range. 

The present fuddamental study of the  ref lec-  

It is  

!?he multiple requiremedts of producing a pure monoenergetic high 
energy beam and known surface conditions necessitated the development of a com- 
binat ion of experimental t e c h n i q ~ e s .  From the r e s u l t s  obtained, it may be con- 
cluded t h a t  the use of heated seeded nozzle beams affords an excellent method of 
achieving the required conditions, and t h a t  the use of an i n e r t  gas beam w a s  
successful i n  eliminating, almost en t i re ly ,  the  contamination a t  t he  t e s t  surface 
due t o  the beam gas. 
interact ion region has been shown t o  be extremely e f fec t ive  i n  maintaining a 
clean ta rge t  surface and i n  permitting the measurement of small r e f l ec t ed  molecu- 
lar fluxes using a simple stagnation detector ( f o r  the i n e r t  gases a t  l e a s t ) .  
use of the retarding f i e l d  diode surface work funct ion monitor has been shown t o  
be compatable with the simultaneous beam sca t te r ing  s tudies ,  and t o  afford a 
convenient and very bseful  method of in fer r ing  gas coverage at the  surface, 
especial ly  when combined with mass spectrographic and f l a s h  desorption techniques. 

The use of gaseous helium cryopumping a t  20°K around the 

The 

The scatbering r e s u l t s  themselves , which are  the  f i rs t  obtained i n  
t h i s  high energy range (0.25 t o  2.0 eV) under such well  characterized beam and 
surface conditions, show the following: F i r s t l y ,  the deviation of the d is t r ibu-  
t i on  maximum f romthe  specular angle (@i - @ m a )  i s  always negative and only s l igh t ly  
varying i n  t h i s  energy range. Secondly the narrowness of the d is t r ibu t ion ,  as 
roughly determined by the parameter A @ r  ( the  width at on/e half  maximum) i s  s t i l l  
increasing with energy at l e a s t  up t o  the  extent of t h i s  energy range. Thirdly, 
adsorbed layers of hydrogen on the surface, even t o  the extent of saturat ion 
coverage, have not changed i n  any way, the form of the  sca t te r ing  from t h a t  f o r  
a clean (bare) surface,  implying t h a t  higher energy 
eq-uivalent t o  r e f l ec t ion  from a clean surface,  can be obtained using a hydrogen 
c a r r i e r  gas i n  a seeded dozzle beam with the same mixture r a t i o s  and source con- 
d i t ions  as i n  the present case. The e f f ec t  of other gases, namely nitrogen and 
carbon monoxide w a s  t o  broaden the d is t r ibu t ion  considerably and s h i f t  the maxi- 
mum of the d i s t r ibu t ion  towards the surface. 
sent  work i s  t h a t  at no time i n  %his  energy range, even under cases of extreme 
surface gas coverage i n  the  heavier gases, did the form of the  d is t r ibu t ion  approach 
cosine l a w .  The use of such a sca t te r ing  l a w  f o r  the prediction of s a t e l l i t e  
drag or flow through a tube, even under conditions of extreme gas coverage, i n  
t h i s  energy range, i s  therefore,  not advised. 

i n e r t  beam sca t te r ing  r e su l t s ,  

Ad important conclusion of the pre- 

Qual i ta t ively,  the  narrowness of the present re f lec ted  d is t r ibu t ions  
combined with the  calculat ion tha t  there  m e  70-80% of the r e f l ec t ed  pa r t i c l e s  
i n  the lobe, suggest t h a t  t he  r e f l ec t ion  mechanism at  t h e  surface i s  tha t  of a 
binary co l l i s ion  and t h a t  the r e f l ec t ed  pa r t i c l e  ve loc i t ies  a re  not much d i f fe ren t  
from those i n  the incident beam. Hence, the conclusion t h a t  the energy and momentum 
accommodation are s ign i f icant ly  incomplete even f o r  the gas covered surfaces. 



The use of the present r e su l t s  t o  in fer  the re f lec t ion  properties 
of other 
d i c t  the form, position of the maximumyand absolute flux values of the scattered 
number f lux dis t r ibut ions obtained i n  these experiments. A theory is  said t o  be 
sui table  i f  i n  predicting one d is t r ibu t ion  by a best  f i t  analysis, it can predict  
a l l  the other dis t r ibut ions by retaining the same f i t t i n g  parameters and varying 
only the physical parameters (e .g. angle of incidence, incident beam energy, e t c  . ) . 
I n  principle,  such a theory could not only be used t o  develop the  gas-surface 
interact ion r e su l t s  f o r  other single c rys ta l  surfaces, but could also,  by proper 
averaging procedures, obtain r e su l t s  fo r  polycrystalline surfaces (more engineering- 
l i ke ) .  
t ha t  once the fundamental principles of scattering are resolved more f u l l y  by ex- 
periments such as reported here, t ha t  r e su l t s  be obtained w i t . h  the  present equip- 
ment using atmospheric gas beams and surfaces more appropriate t o  s a t e l l i t e  con- 
s t ruc ti on. 

gas beams from other surfaces i s  a r e a l i t y  i f  theory can accurately pre- 

This represents the more tedious approach and it i s  suggested instead, 
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